Please wait a minute...
金属学报  2020, Vol. 56 Issue (7): 937-948    DOI: 10.11900/0412.1961.2019.00291
  本期目录 | 过刊浏览 |
1100 MPa级高强钢的低周疲劳行为
周红伟1,2, 白凤梅3,4(), 杨磊1,2, 陈艳1,2, 方俊飞1,2, 张立强3, 衣海龙4, 何宜柱1,2
1.安徽工业大学先进金属材料绿色制备与表面技术教育部重点实验室 马鞍山 243032
2.安徽工业大学材料科学与工程学院 马鞍山 243032
3.安徽工业大学冶金工程学院 马鞍山 243032
4.东北大学轧制技术及连轧自动化国家重点实验室 沈阳 110819
Low-Cycle Fatigue Behavior of 1100 MPa Grade High-Strength Steel
ZHOU Hongwei1,2, BAI Fengmei3,4(), YANG Lei1,2, CHEN Yan1,2, FANG Junfei1,2, ZHANG Liqiang3, YI Hailong4, HE Yizhu1,2
1. Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials, Ministry of Education, Anhui University of Technology, Maanshan 243032, China
2. School of Materials Science and Engineering, Anhui University of Technology, Maanshan 243032, China
3. School of Metallurgical Engineering, Anhui University of Technology, Maanshan 243032, China
4. State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China
引用本文:

周红伟, 白凤梅, 杨磊, 陈艳, 方俊飞, 张立强, 衣海龙, 何宜柱. 1100 MPa级高强钢的低周疲劳行为[J]. 金属学报, 2020, 56(7): 937-948.
Hongwei ZHOU, Fengmei BAI, Lei YANG, Yan CHEN, Junfei FANG, Liqiang ZHANG, Hailong YI, Yizhu HE. Low-Cycle Fatigue Behavior of 1100 MPa Grade High-Strength Steel[J]. Acta Metall Sin, 2020, 56(7): 937-948.

全文: PDF(3391 KB)   HTML
摘要: 

研究了在对称应变控制条件下1100 MPa级调质态高强钢的低周疲劳性能,借助OM、SEM、TEM等手段对高强钢在低周疲劳载荷下的微观组织、断口形貌、裂纹扩展特性、夹杂物形态等进行了研究。结果表明,调质态1100 MPa高强钢具有优异的低周疲劳性能,主要有2个原因:一是由于夹杂物形态为近圆形,直径为2~5 μm,低于夹杂物引起疲劳裂纹萌生的临界尺寸,裂纹萌生于试样表面,提高了疲劳裂纹萌生寿命;二是原奥氏体晶界、马氏体板条包/束界、夹杂物/孔洞都会诱导裂纹偏转,使裂纹走向曲折,降低了裂纹扩展速率,提高了疲劳裂纹扩展寿命。

关键词 高强钢低周疲劳夹杂物疲劳断裂疲劳裂纹扩展    
Abstract

The low-cycle fatigue (LCF) behavior of 1100 MPa grade tempered high strength steel under symmetrical strain control conditions was studied at the strain amplitude ranges of 0.4%~1.2% in this work. The LCF properties of quenching and tempering high strength steel were examined by means of OM, SEM and TEM. The microstructure changes, fracture morphology, crack propagation characteristics and inclusion morphology were studied in detail. The results show that the cyclic hardening and cyclic softening depend on strain amplitude. At the low strain amplitude of 0.4%, rapid cyclic hardening occurs in initial 10 cyc, and then the stress remains almost unchanged until the sample breaks. While at the strain amplitude ranges of 0.5%~1.2%, the cyclic hardening reaches a peak at the first few cycles, followed by the remarkable cyclic softening until the sample fails. The cyclic softening is mainly due to the recovery of some martensite lath under low-cycle fatigue loading and the decrease of dislocation density in the laths. 1100 MPa grade high-strength steel is found to obey LCF Manson-Coffin relationship. The high-strength steel has excellent LCF performance for two main reasons, which is related with the shape and size of inclusions. One is that the shape of the inclusion is nearly circular, and the diameter is 2~5 μm, which is lower than the critical dimension of the inclusions causing fatigue crack initiation. The crack is initiated on the surface of the sample. This increases fatigue crack initiation life. The other one is that the original austenite grain boundary, the martensite packet/block boundary and the inclusions or cavities can induce the crack deflection, reducing the crack propagation rate and increasing fatigue crack propagation life.

Key wordshigh-strength steel    low-cycle fatigue    inclusion    fatigue fracture    crack propagation
收稿日期: 2019-09-04     
ZTFLH:  TG142.1,TG111.8  
基金资助:国家自然科学基金钢铁联合基金培育项目(U1760108);国家自然科学基金项目(51674079);国家自然科学基金项目(51874001);安徽省高等学校自然科学研究重点项目(KJ2018A0062);安徽省高等学校自然科学研究重点项目(KJ2019A0059)
作者简介: 周红伟,男,1978年生,博士
图1  低周疲劳试样示意图
图2  不同应变幅下高强钢循环应力响应曲线
图3  1100 MPa级高强钢的低周疲劳寿命曲线及与其它级别钢的低周疲劳寿命比较
High-strength steelσ0.2 / MPaσb / MPaδ / %MicrostructureRef.
1100 MPa grade1160135517.8Tempered lath martensite-
ASTM A7231170126213.0Tempered lath martensite[25]
34CrNiMo6967103518.0Martensite, lower bainite[7]
HSLA89391415.3Lath bainite[24]
10CrNiMo83092519.0Tempered lath martensite[5]
表1  不同种类高强钢的力学性能
图4  高强钢调质态组织的TEM像
图5  高强钢中碳化物强化相形貌、SAED花样及EDS分析
图6  高强钢在应变幅为0.4%和1.0%下疲劳断裂试样的TEM像
图7  不同应变幅下高强钢疲劳裂纹于试样表面萌生
图8  高强钢在1.0%应变下的主裂纹疲劳断口和二次裂纹
图9  疲劳断口上的夹杂物
图10  高强钢在1.0%应变幅下的裂纹扩展形貌
[1] An T B, Tian Z L, Shan J G, et al. Effect of the temperature of post weld heat treatment on microstructure and performance of weld metal for 1000 MPa grade high strength steel [J]. J. Mech. Eng., 2015, 51(4): 40
[1] (安同邦, 田志凌, 单际国等. 后热温度对1000 MPa级高强钢焊缝组织与性能的影响 [J]. 机械工程学报, 2015, 51(4): 40)
[2] Zhu B, Liu Z, Wang Y A, et al. Application of a model for quenching and partitioning in hot stamping of high-strength steel [J]. Metall. Mater. Trans., 2018, 49A: 1304
[3] Xie Z J, Fang Y P, Han G, et al. Structure-property relationship in a 960 MPa grade ultrahigh strength low carbon niobium-vanadium microalloyed steel: The significance of high frequency induction tempering [J]. Mater. Sci. Eng., 2014, A618: 112
[4] Fang J F, Xu Z L, Si S H, et al. Microstructure transformation characteristic of CGHAZ of Q1100 high-strength steel at different cooling rates [J]. Mater. Mech. Eng., 2017, 41(1): 107
[4] (方俊飞, 徐震霖, 斯松华等. 不同冷速下Q1100高强钢焊接热影响区粗晶区的组织转变特征 [J]. 机械工程材料, 2017, 41(1): 107)
[5] Zhang Y J. Low cycle fatigue characteristic of 10CrNiMo high-strength steel [J]. J. Univ. Sci. Technol. Beijing, 2011, 33(1): 22
[5] (张亚军. 10CrNiMo高强钢的低周疲劳特性 [J]. 北京科技大学学报, 2011, 33(1): 22)
[6] Sowards J W, Pfeif E A, Connolly M J, et al. Low-cycle fatigue behavior of fiber-laser welded, corrosion-resistant, high-strength low alloy sheet steel [J]. Mater. Des., 2017, 121: 393
[7] Branco R, Costa J D, Antunes F V. Low-cycle fatigue behaviour of 34CrNiMo6 high strength steel [J]. Theor. Appl. Fract. Mec., 2012, 58: 28
[8] Jiang Q M, Zhang X Q, Chen L Q, et al. SH-CCT Diagram, microstructures and properties of heat-affected zone in a 1000 MPa grade extra high-strength steel [J]. J. Iron Steel. Res., 2014, 26(1):47
[8] (蒋庆梅, 张小强, 陈礼清等. 1000 MPa级超高强钢的SH-CCT曲线及其热影响区的组织和性能 [J]. 钢铁研究学报, 2014, 26(1):47)
[9] Pang J C, Li S X, Wang Z G, et al. General relation between tensile strength and fatigue strength of metallic materials [J]. Mater. Sci. Eng., 2013, A564: 331
[10] Wang X S, Liang F, Zeng Y P, et al. SEM in situ observations to the effects of inclusions on initiation and propagation of the low cyclic fatigue crack in super strength steel [J]. Acta Metall. Sin., 2005, 41: 1272
[10] (王习术, 梁 锋, 曾燕屏等. 夹杂物对超高强度钢低周疲劳裂纹萌生及扩展影响的原位观测 [J]. 金属学报, 2005, 41: 1272)
[11] Li S X. Effects of inclusions on very high cycle fatigue properties of high strength steels [J]. Int. Mater. Rev., 2012, 57: 92
[12] Song S W, Lee J H, Lee H J, et al. Enhancing high-cycle fatigue properties of cold-drawn Fe-Mn-C TWIP steels [J]. Int. J. Fatigue, 2016, 85: 57
[13] Zhou H W, He Y Z, Zhang H, et al. Influence of dynamic strain aging pre-treatment on the low-cycle fatigue behavior of modified 9Cr-1Mo steel [J]. Int. J. Fatigue, 2013, 47: 83
[14] Ye D Y, Matsuoka S, Nagashima N, et al. The low-cycle fatigue, deformation and final fracture behaviour of an austenitic stainless steel [J]. Mater. Sci. Eng., 2006, A415: 104
[15] Bai F M, Zhou H W, Liu X H, et al. Masing behavior and microstructural change of quenched and tempered high-strength steel under low cycle fatigue [J]. Acta. Metall. Sin. (Engl. Lett.), 2019, 32: 1346
[16] Chakraborti P C, Mitra M K. Room temperature low cycle fatigue behaviour of two high strength lamellar duplex ferrite-martensite (DFM) steels [J]. Int. J. Fatigue, 2005, 27: 511
[17] Verma P, Srinivas N C S, Singh S R, et al. Low cycle fatigue behavior of modified 9Cr-1Mo steel at room temperature [J]. Mater. Sci. Eng., 2016, A652: 30
[18] Chauhan A, Hoffmann J, Litvinov D, et al. High-temperature low-cycle fatigue behavior of a 9Cr-ODS steel: Part 1-Pure fatigue, microstructure evolution and damage characteristics [J]. Mater. Sci. Eng., 2017, A707: 207
[19] Chauhan A, Litvinov D, Aktaa J. Deformation and damage mechanisms of a bimodal 12Cr-ODS steel under high-temperature cyclic loading [J]. Int. J. Fatigue, 2016, 93: 1
[20] Marinelli M C, Alvarez-Armas I, Krupp U. Cyclic deformation mechanisms and microcracks behavior in high-strength bainitic steel [J]. Mater. Sci. Eng., 2017, A684: 254
[21] Kang J, Zhang F C, Long X Y, et al. Low cycle fatigue behavior in a medium-carbon carbide-free bainitic steel [J]. Mater. Sci. Eng., 2016, A66: 88
[22] François D, Pineau A, Zaoui A. Mechanical Behaviour of Materials: Volume II: Fracture Mechanics and Damage [M]. 2nd Ed., London: Springer Dordrecht Heidelberg, 2013: 340
[23] Glodež S, Knez M, Jezernik N, et al. Fatigue and fracture behaviour of high strength steel S1100Q [J]. Eng. Fail. Anal., 2009, 16: 2348
[24] Wang J G, Yang S L, Wang H Y, et al. Low-cycle fatigue properties of 800 MPa-grade ultrafine-grained steel [J]. J. Univ. Sci. Technol. Beijing, 2005, 27(1): 75
[24] (王建国, 杨胜利, 王红缨等. 800 MPa级低合金高强度钢低周疲劳性能 [J]. 北京科技大学学报, 2005, 27(1): 75)
[25] Koh S K, Stephens R I. Mean stress effects on low cycle fatigue for a high strength steel [J]. Fatigue Fract. Eng. Mater. Struct., 1991, 14: 413
[26] Fang Y P, Xie Z J, Shang C J. Effect of induction tempering on carbide precipitation behavior and toughness of a 1000 MPa grade high strength low alloy steel [J]. Acta Metall. Sin., 2014, 50: 1413
[26] (房玉佩, 谢振家, 尚成嘉. 感应回火对1000 MPa级高强度低合金钢碳化物析出行为及韧性的影响 [J]. 金属学报, 2014, 50: 1413)
[27] Zhou H W, He Y Z, Cui M, et al. Dependence of dynamic strain ageing on strain amplitudes during the low-cycle fatigue of TP347H austenitic stainless steel at 550 ℃ [J]. Int. J. Fatigue, 2013, 56: 1
[28] Kruml T, Polák J. Fatigue cracks in Eurofer 97 steel: Part I. Nucleation and small crack growth kinetics [J]. J Nucl. Mater., 2011, 412: 2
[29] Man J, Vystavěl T, Weidner A, et al. Study of cyclic strain localization and fatigue crack initiation using FIB technique [J]. Int. J. Fatigue, 2012, 39: 44
[30] Man J, Klapetek P, Man O, et al. Extrusions and intrusions in fatigued metals. Part 2. AFM and EBSD study of the early growth of extrusions and intrusions in 316L steel fatigued at room temperature [J]. Philos. Mag., 2009, 89: 1337
[31] Chan K S. Roles of microstructure in fatigue crack initiation [J]. Int. J. Fatigue, 2010, 32: 1428
[32] Pan Q S, Zhou H F, Lu Q H, et al. History-independent cyclic response of nanotwinned metals [J]. Nature, 2017, 551: 214
pmid: 29088707
[33] Koyama M, Zhang Z, Wang M M, et al. Bone-like crack resistance in hierarchical metastable nanolaminate steels [J]. Science, 2017, 355: 1055
pmid: 28280201
[34] Abareshi M, Emadoddin E. Effect of retained austenite characteristics on fatigue behavior and tensile properties of transformation induced plasticity steel [J]. Mater. Des., 2011, 32: 5099
[35] Gui X L, Zhang B X, Gao G H, et al. Fatigue behavior of bainite/martensite multiphase high strength steel treated by quenching-partitioning-tempering process [J]. Acta Metall. Sin., 2016, 52: 1036
[35] (桂晓露, 张宝祥, 高古辉等. Q-P-T处理贝氏体/马氏体复相高强钢疲劳断裂特性研究 [J]. 金属学报, 2016, 52: 1036)
[36] Zhang Z, Hu Z F, Fan L K, et al. Low cycle fatigue behavior and cyclic softening of P92 ferritic-martensitic steel [J]. J. Iron Steel Res. Int., 2015, 22: 534
[37] Huang Z W, Yuan F H, Wang Z G, et al. Low cycle fatigue properties and fracture mechanisms of M38 nickel base superalloy at high temperature [J]. Acta Metall. Sin., 2007, 43: 1025
[37] (黄志伟, 袁福河, 王中光等. M38镍基高温合金高温低周疲劳性能及断裂机制 [J]. 金属学报, 2007, 43: 1025)
[38] Wei D Y, Gu J L, Fang H S, et al. Fatigue behavior on a 1500 MPa grade bainite/martensite duplex-phase high strength steel [J]. Acta Metall. Sin., 2003, 39: 734
[38] (韦东远, 顾家琳, 方鸿生等. 1500 MPa级贝氏体/马氏体复相高强钢的疲劳断裂特性 [J]. 金属学报, 2003, 39: 734)
[39] Hu D Y, Wang T, Ma Q H, et al. Effect of inclusions on low cycle fatigue lifetime in a powder metallurgy nickel-based superalloy FGH96 [J]. Int. J. Fatigue, 2019, 118: 237
[1] 江河, 佴启亮, 徐超, 赵晓, 姚志浩, 董建新. 镍基高温合金疲劳裂纹急速扩展敏感温度及成因[J]. 金属学报, 2023, 59(9): 1190-1200.
[2] 陈润农, 李昭东, 曹燕光, 张启富, 李晓刚. 9%Cr合金钢在含Cl环境中的初期腐蚀行为及局部腐蚀起源[J]. 金属学报, 2023, 59(7): 926-938.
[3] 张月鑫, 王举金, 杨文, 张立峰. 冷却速率对管线钢中非金属夹杂物成分演变的影响[J]. 金属学报, 2023, 59(12): 1603-1612.
[4] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[5] 金鑫焱, 储双杰, 彭俊, 胡广魁. 露点对连续退火0.2%C-1.5%Si-2.5%Mn高强钢选择性氧化及脱碳的影响[J]. 金属学报, 2023, 59(10): 1324-1334.
[6] 侯旭儒, 赵琳, 任淑彬, 彭云, 马成勇, 田志凌. 热输入对电弧增材制造船用高强钢组织与力学性能的影响[J]. 金属学报, 2023, 59(10): 1311-1323.
[7] 戚钊, 王斌, 张鹏, 刘睿, 张振军, 张哲峰. 应力比对含缺陷选区激光熔化TC4合金稳态疲劳裂纹扩展速率的影响[J]. 金属学报, 2023, 59(10): 1411-1418.
[8] 周红伟, 高建兵, 沈加明, 赵伟, 白凤梅, 何宜柱. 高温低周疲劳下C-HRA-5奥氏体耐热钢中孪晶界演变[J]. 金属学报, 2022, 58(8): 1013-1023.
[9] 孙阳庭, 李一唯, 吴文博, 蒋益明, 李劲. CaMg掺杂下夹杂物对C70S6非调质钢点蚀行为的影响[J]. 金属学报, 2022, 58(7): 895-904.
[10] 刘洁, 徐乐, 史超, 杨少朋, 何肖飞, 王毛球, 时捷. 稀土Ce对非调质钢中硫化物特征及微观组织的影响[J]. 金属学报, 2022, 58(3): 365-374.
[11] 朱苗勇, 邓志银. 钢精炼过程非金属夹杂物演变与控制[J]. 金属学报, 2022, 58(1): 28-44.
[12] 唐海燕, 刘锦文, 王凯民, 肖红, 李爱武, 张家泉. 连铸中间包加热技术及其冶金功能研究进展[J]. 金属学报, 2021, 57(10): 1229-1245.
[13] 陆斌, 陈芙蓉, 智建国, 耿如明. 应用稀土氧化物冶金技术改善高强钢焊接性能[J]. 金属学报, 2020, 56(9): 1206-1216.
[14] 孙飞龙, 耿克, 俞峰, 罗海文. 超洁净轴承钢中夹杂物与滚动接触疲劳寿命的关系[J]. 金属学报, 2020, 56(5): 693-703.
[15] 张哲峰,邵琛玮,王斌,杨浩坤,董福元,刘睿,张振军,张鹏. 孪生诱发塑性钢拉伸与疲劳性能及变形机制[J]. 金属学报, 2020, 56(4): 476-486.