Please wait a minute...
金属学报  2019, Vol. 55 Issue (7): 885-892    DOI: 10.11900/0412.1961.2018.00512
  本期目录 | 过刊浏览 |
TC11/TC17钛合金线性摩擦焊接头界面研究
杜随更(),高漫,徐婉婷,王喜锋
西北工业大学现代设计与集成制造技术教育部重点实验室 西安 710072
Study on Interface of Linear Friction Welded Joint Between TC11 and TC17 Titanium Alloy
Suigeng DU(),Man GAO,Wanting XU,Xifeng WANG
Key Laboratory of Ministry of Education for Contemporary Design and Integrated Manufacturing Technology, Northwestern Polytechnical University, Xi'an 710072, China
全文: PDF(22210 KB)   HTML
摘要: 

采用OM、SEM、TEM等手段对TC11和TC17钛合金线性摩擦焊接界面的显微组织进行了分析。结果表明,在焊合界面处发生了动态再结晶,形成了共有晶粒和共有晶界,共有晶粒内焊合界面处形成了一个相界面。合金元素在共有晶界和共有晶粒内相界面处均发生了相互扩散。在共有晶粒和共有晶界形成过程中对溶质元素的排斥、吸附与拖曳作用下,共有晶粒内相界面处合金元素的变化范围比共有晶界处宽,且焊合区相界面处的成分变化要大于相内部。焊合界面处形成了大量细小的针状α相,其内有大量的变形孪晶。共有晶粒内的焊合界面的微观结构包括2个界面(两侧材料各自的再结晶生长界面)和2个生长区(有序和无序),该处动态再结晶也有类似于凝固结晶的有序和无序结晶过程。

关键词 钛合金线性摩擦焊焊接界面    
Abstract

As a solid-state welding technology, linear friction welding has unique advantages in machining dissimilar titanium alloy blade disc. However, there still lacks sufficient support in basic applied research, and the mechanism of interface formation is still under study. In this work, the microstructure of the welded joint between TC11 and TC17 titanium alloys was analyzed by OM, SEM and TEM, respectively. The results showed that common grains and common grain boundaries are formed at the weld interface. In the common grain, a phase boundary is formed in the weld interface. Elements diffusion is observed on both sides of the common grain boundary and the phase boundary in the common grain. Under the action of rejection, adsorption and towing of solute elements in the formation of common grains and common grain boundary, the observed diffusion distance of elements in the phase boundary of the common grain is longer than the one in the common grain boundary. The composition change at the phase boundary of the weld zone is greater than the one inside the phase. A large number of small needle-like α phases are formed at the weld interface that has a large number of deformed twins. The structure of the interface in common grains consists of two interfaces (recrystallization growth interfaces of both sides) and two growth regions (ordered and disordered). The dynamic recrystallization also has an ordered and disordered crystallization process similar to that of solidification crystallization.

Key wordstitanium alloy    linear friction welding    weld interface
收稿日期: 2018-11-13     
ZTFLH:  TG457  
基金资助:国家自然科学基金项目(Nos.51675434);国家自然科学基金项目(10477017)
通讯作者: 杜随更     E-mail: fwcenter@nwpu.edu.cn
Corresponding author: Suigeng DU     E-mail: fwcenter@nwpu.edu.cn
作者简介: 杜随更,男,1963年生,博士,教授

引用本文:

杜随更,高漫,徐婉婷,王喜锋. TC11/TC17钛合金线性摩擦焊接头界面研究[J]. 金属学报, 2019, 55(7): 885-892.
Suigeng DU, Man GAO, Wanting XU, Xifeng WANG. Study on Interface of Linear Friction Welded Joint Between TC11 and TC17 Titanium Alloy. Acta Metall Sin, 2019, 55(7): 885-892.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2018.00512      或      https://www.ams.org.cn/CN/Y2019/V55/I7/885

图1  TC11和TC17显微组织
图2  焊接接头宏观形貌
图3  焊接界面的SEM像及不同位置线扫描拟合结果
图4  焊接界面的TEM像及SAED花样
图5  焊接界面TEM像
图6  焊接界面HRTEM像
[1] Zhang H Y, Zhang L F. Development overview of aeroengine integral blisk and its manufacturing technology at home and abroad [J]. Aero. Manuf. Technol., 2013, (23-24): 38
[1] (张海艳, 张连锋. 航空发动机整体叶盘制造技术国内外发展概述 [J]. 航空制造技术, 2013, (23-24): 38)
[2] Han X F, Zhang L, Qian L Y. Application of solid state welding in civil aircraft aeroengine [J]. Aero. Manuf. Technol., 2012, (13): 55
[2] (韩秀峰, 张 露, 钱凌翼. 固态焊接在民用航空发动机中的应用 [J]. 航空制造技术, 2012, (13): 55)
[3] Chen L, Li W Y, Ma T J. The state-of-the-art and perspectives of linear friction welding technology [J]. Adv. Aero. Sci. Eng., 2010, 1: 178
[3] (陈 亮, 李文亚, 马铁军等. 线性摩擦焊接技术研究进展与展望 [J]. 航空工程进展, 2010, 1: 178)
[4] Su Y, Li W Y, Wang X Y, et al. Linear friction welding of titanium alloys: State-of-the-art and perspectives [J]. Mater. China, 2017, 36: 852
[4] (苏 宇, 李文亚, 王新宇等. 钛合金线性摩擦焊研究现状及展望 [J]. 中国材料进展, 2017, 36: 852)
[5] Li W Y, Ma T, Zhang Y, et al. Microstructure characterization and mechanical properties of linear friction welded Ti-6Al-4V alloy [J]. Adv. Eng. Mater., 2008, 10: 89
[6] Li W Y, Ma T J, Yang S Q. Microstructure evolution and mechanical properties of linear friction welded Ti-5Al-2Sn-2Zr-4Mo-4Cr (Ti17) titanium alloy joints [J]. Adv. Eng. Mater., 2010, 12: 35
[7] Ji Y J, Zhang T C, Li X H, et al. Micro-area characteristic analysis of TC11/TC17 linear friction welding flash and weld [J]. Aero. Manuf. Technol., 2015, (11): 62
[7] (季亚娟, 张田仓, 李晓红等. TC11/TC17线性摩擦焊飞边及焊缝微区特征分析 [J]. 航空制造技术2015, (11): 62)
[8] Zhao P K, Fu L, Chen H Y. Low cycle fatigue properties of linear friction welded joint of TC11 and TC17 titanium alloys [J]. J. Alloys Compd., 2016, 675: 248
[9] Zhao P K, Fu L. Strain hardening behavior of linear friction welded joints between TC11 and TC17 dissimilar titanium alloys [J]. Mater. Sci. Eng., 2015, A621: 149
[10] Dalgaard E, Wanjara P, Gholipour J, et al. Linear friction welding of a near-β titanium alloy [J]. Acta Mater., 2012, 60: 770
[11] Li W Y, Suo J D, Ma T J, et al. Abnormal microstructure in the weld zone of linear friction welded Ti-6.5Al-3.5Mo-1.5Zr-0.3Si titanium alloy joint and its influence on joint properties [J]. Mater. Sci. Eng., 2014, A599: 38
[12] Guo Y N, Attallah M M, Chiu Y, et al. Spatial variation of microtexture in linear friction welded Ti-6Al-4V [J]. Mater. Charact., 2017, 127: 342
[13] Karadge M, Preuss M, Lovell C, et al. Texture development in Ti-6Al-4V linear friction welds [J]. Mater. Sci. Eng., 2007, A459: 182
[14] Wanjara P, Jahazi M. Linear friction welding of Ti-6Al-4V: Processing, microstructure, and mechanical-property inter-relationships [J]. Metall. Mater. Trans., 2005, 36A: 2149
[15] Turner R, Gebelin J C, Ward R M, et al. Linear friction welding of Ti-6Al-4V: Modelling and validation [J]. Acta Mater., 2011, 59: 3792
[16] Zhang C C, Zhang T C, Ji Y J, et al. Formation process and mechanism of linear friction welding joint [J]. J. Mater. Eng., 2015, 43(11): 39
[16] (张传臣, 张田仓, 季亚娟等. 线性摩擦焊接头形成过程及机理 [J]. 材料工程, 2015, 43(11): 39)
[17] Lang B, Zhang T C, Tao J, et al. Microstructure in linear friction welded dissimillar titanium alloy joint [J]. Trans. China Weld. Inst., 2012, 33(7): 105
[17] (郎 波, 张田仓, 陶 军等. 异质钛合金线性摩擦焊接头微观组织 [J]. 焊接学报, 2012, 33(7): 105)
[18] Lang B, Zhang T C, Tao J, et al. Formation mechanism of linear friction welded titanium alloy joint [J]. Trans. China Weld. Inst., 2012, 35(9): 37
[18] (郎 波, 张田仓, 陶 军等. 钛合金线性摩擦焊接头形成机制 [J]. 焊接学报, 2014, 35(9): 37)
[19] Lang B, Zhang T C, Li X H, et al. Microstructural evolution of a TC11 titanium alloy during linear friction welding [J]. J. Mater. Sci., 2010, 45: 6218
[20] Wen G D, Ma T J, Li W Y, et al. Cyclic deformation behavior of linear friction welded Ti6Al4V joints [J]. Mater. Sci. Eng., 2014, A597: 408
[21] Ma T J, Tang L F, Li W Y, et al. Linear friction welding of a solid-solution strengthened Ni-based superalloy: Microstructure evolution and mechanical properties studies [J]. J. Manuf. Processes, 2018, 34: 442
[22] Ma T J, Chen T, Li W Y, et al. Formation mechanism of linear friction welded Ti-6Al-4V alloy joint based on microstructure observation [J]. Mater. Charact., 2011, 62: 130
[23] Chen Y. Study on the microstructure of TC4 joints welded by linear friction welding [D]. Dalian: Dalian Jiaotong University, 2012
[23] (陈 燕. TC4钛合金线性摩擦焊接头组织结构分析 [D]. 大连: 大连交通大学, 2012)
[24] Wang X Y, Li W Y, Ma T J. Research status of microstructure of linear friction welded titanium alloy [J]. Aero. Manuf. Technol., 2015, (20): 56
[24] (王新宇, 李文亚, 马铁军. 钛合金线性摩擦焊接界面组织研究现状 [J]. 航空制造技术, 2015, (20): 56)
[25] Editiorial Committee of China Aeronautical Materials Handbook. China Aeronautical Materials Handbook (Book 4) [M]. 2nd Ed., Beijing: China Standard Press, 2002: 152
[25] (《中国航空材料手册》编辑委员会. 中国航空材料手册(第4卷) [M]. 第2版. 北京: 中国标准出版社, 2002: 152)
[1] 柯林达,殷杰,朱海红,彭刚勇,孙京丽,陈昌棚,王国庆,李中权,曾晓雁. 钛合金薄壁件选区激光熔化应力演变的数值模拟[J]. 金属学报, 2020, 56(3): 374-384.
[2] 程超,陈志勇,秦绪山,刘建荣,王清江. TA32钛合金厚板的微观组织、织构与力学性能[J]. 金属学报, 2020, 56(2): 193-202.
[3] 李学雄,徐东生,杨锐. 双相钛合金高温变形协调性的CPFEM研究[J]. 金属学报, 2019, 55(7): 928-938.
[4] 黄森森,马英杰,张仕林,齐敏,雷家峰,宗亚平,杨锐. α+β两相钛合金元素再分配行为及其对显微组织和力学性能的影响[J]. 金属学报, 2019, 55(6): 741-750.
[5] 任德春, 苏虎虎, 张慧博, 王健, 金伟, 杨锐. 冷旋锻变形对TB9钛合金显微组织和拉伸性能的影响[J]. 金属学报, 2019, 55(4): 480-488.
[6] 许擎栋, 李克俭, 蔡志鹏, 吴瑶. 脉冲磁场对TC4钛合金微观结构的影响及其机理探究[J]. 金属学报, 2019, 55(4): 489-495.
[7] 田银宝, 申俊琦, 胡绳荪, 勾健. 丝材+电弧增材制造钛/铝异种金属反应层的研究[J]. 金属学报, 2019, 55(11): 1407-1416.
[8] 何波, 邢盟, 杨光, 邢飞, 刘祥宇. 成分梯度对激光沉积制造TC4/TC11连接界面组织和性能的影响[J]. 金属学报, 2019, 55(10): 1251-1259.
[9] 闵小华, 向力, 李明佳, 姚凯, 江村聪, 程从前, 土谷浩一. {332}<113>孪晶与等温ω相的组合对不同O含量Ti-15Mo合金力学性能的影响[J]. 金属学报, 2018, 54(9): 1262-1272.
[10] 李彦默, 刘晨曦, 余黎明, 李会军, 王祖敏, 刘永长, 李文亚. 高温时效对S31042钢线性摩擦焊接头组织和力学性能的影响[J]. 金属学报, 2018, 54(7): 981-990.
[11] 于晓明, 谭丽丽, 刘宗元, 杨柯, 朱忠林, 李扬德. Ti6Al4V表面生物功能纯Mg薄膜制备及性能研究[J]. 金属学报, 2018, 54(6): 943-949.
[12] 翟斌, 周凯, 吕鹏, 王海鹏. 自由落体条件下Ti-6Al-4V合金微液滴的快速凝固研究[J]. 金属学报, 2018, 54(5): 824-830.
[13] 徐磊, 郭瑞鹏, 吴杰, 卢正冠, 杨锐. 钛合金粉末热等静压近净成形研究进展[J]. 金属学报, 2018, 54(11): 1537-1552.
[14] 邵珩, 李岩, 南海, 许庆彦. Ti-6Al-4V合金熔模铸造过程中的固态相变微观组织演变的数值模拟[J]. 金属学报, 2017, 53(9): 1140-1152.
[15] 席明哲, 吕超, 吴贞号, 尚俊英, 周玮, 董荣梅, 高士友. 连续点式锻压激光快速成形TC11钛合金的组织和力学性能[J]. 金属学报, 2017, 53(9): 1065-1074.