Please wait a minute...
金属学报  2014, Vol. 50 Issue (10): 1224-1230    DOI: 10.11900/0412.1961.2014.00152
  本期目录 | 过刊浏览 |
Cu-2.1Fe合金中共格g-Fe粒子的粗化规律与强化效果
董琦祎, 申镭诺, 曹峰, 贾延琳, 汪明朴()
中南大学材料科学与工程学院, 长沙 410083
STUDY OF THE COARSENING AND HARDENING BEHAVIORS OF COHERENT g-Fe PARTICLES IN Cu-2.1Fe ALLOY
DONG Qiyi, SHEN Leinuo, CAO Feng, JIA Yanlin, WANG Mingpu()
School of Materials Science and Engineering, Central South University, Changsha 410083
引用本文:

董琦祎, 申镭诺, 曹峰, 贾延琳, 汪明朴. Cu-2.1Fe合金中共格g-Fe粒子的粗化规律与强化效果[J]. 金属学报, 2014, 50(10): 1224-1230.
Qiyi DONG, Leinuo SHEN, Feng CAO, Yanlin JIA, Mingpu WANG. STUDY OF THE COARSENING AND HARDENING BEHAVIORS OF COHERENT g-Fe PARTICLES IN Cu-2.1Fe ALLOY[J]. Acta Metall Sin, 2014, 50(10): 1224-1230.

全文: PDF(5724 KB)   HTML
摘要: 

采用TEM, SEM, 硬度及电导率测试等手段, 研究了Cu-2.1Fe合金在不同温度长期时效后析出相形貌和合金性能的变化. 结果表明, 500 ℃为合金最佳时效温度, 峰时效硬度平台期较长. 合金峰时效时g-Fe粒子平均直径约12 nm, 且与基体完全共格. g-Fe粒子长大后会渐渐失去共格效应且方形化, 粗化规律符合Lifshitz-Slyozov-Wagner (LSW)规律, 粗化激活能为222 kJ/mol. Fe粒子的时效强化效果不显著, 最大强度增量约100 MPa. Cu-2.1Fe合金欠时效时遵循的强化机制为共格强化机制, 合金过时效后强化机制为Orowan强化机制, 理论预测与实验结果符合良好.

关键词 Cu-2.1Fe合金共格粒子粗化强化理论    
Abstract

As one of the most widely used integrated circuit (IC) lead frame materials, Cu-2.1Fe alloy (C19400) shows excellent comprehensive properties, such as 90° bend fatigue, 90° bend formability, corrosion-proof, solder ability and resistance of solder peeling off. As a successful medium-strength and high-conductivity copper alloy, the Cu-2.1Fe alloy is strengthened by precipitation hardening and work hardening. Metastable coherent g-Fe particles will precipitate from supersaturated copper matrix during aging. The effects of long-term aging at different temperatures on the g-Fe coarsening characteristics and the mechanical properties of Cu-2.1Fe alloy were investigated, by means of conventional TEM, SEM, hardness, tensile strength and electrical conductivity testing. The results show that solution-treated Cu-2.1Fe alloys can reach its peak hardness and maintain for a longer time when aging at 500 ℃. The maximum of strength occurred at a particle size of about 12 nm in mean diameter. The coarsening kinetics of g-Fe follows Lifshitz-Slyozov-Wagner (LSW) theory and the activation energy for growth is estimated to 222 kJ/mol. Furthermore, it is found that coherent Fe particles gradually evolve into semi-coherent and cubical particles after aging for a long time and at high temperatures. The aging strengthening effect of Fe particles is not significant, and the maximum increment of stress is about 100 MPa. The strengthening mechanism of undeformed Cu-Fe alloy is coherency strengthening during the under-aged stage and changes to Orowan mechanism during the over-aged stage. Experimental results are in agreement with theoretical predictions.

Key wordsCu-2.1Fe alloy    coherent particle    coarsening    strengthening theory
收稿日期: 2014-03-31     
ZTFLH:  TG146.1  
基金资助:*中南大学贵重仪器设备开放共享基金资助项目CSUZC20140012
作者简介: null

董琦祎, 男, 1986年生, 博士生

图1  Cu-Fe二元合金相图[10]
图2  Cu-2.1Fe合金在不同温度时效1 h后硬度与电导率变化情况
图3  Cu-2.1Fe合金的硬度和电导率随时效温度和时效时间的变化
图4  Cu-2.1Fe合金不同温度时效1 h后的g-Fe粒子形貌
图5  Cu-2.1Fe合金时效后的Fe粒子形貌
图6  高温时效对合金中Fe粒子尺寸的影响
图7  Cu-2.1Fe合金在不同条件下时效后Fe粒子的粗化规律和激活能计算
图8  Cu-2.1Fe 合金室温拉伸断口形貌
Sample sm / MPa s0.2 / MPa Elongation / %
Solution treated 264.0 85.6 46.2
400 ℃, 1 h 270.8 109.2 34.0
500 ℃, 1 h 297.7 138.3 37.8
600 ℃, 1 h 316.0 126.5 38.7
700 ℃, 1 h 322.8 142.4 44.6
700 ℃, 8 h 299.0 116.5 42.4
表1  不同时效态下Cu-2.1Fe 合金的力学性能
图9  Cu-2.1Fe合金的Fe粒子大小与强化机制的关系
[1] Song L N, Liu J B, Huang L Y, Zeng Y W, Meng L. Acta Metall Sin, 2012; 48: 1459
[1] (宋鲁南, 刘嘉斌, 黄六一, 曾跃武, 孟 亮. 金属学报, 2012; 48: 1459)
[2] Wu Z W, Liu J J, Chen Y, Meng L. J Alloys Compd, 2009; 467: 213
[3] Dong Q Y, Wang M P, Jia Y L, Chen C, Xia C D. Trans Mater Heat Treat, 2013; 34(6): 75
[3] (董琦祎, 汪明朴, 贾延琳, 陈 畅, 夏承东. 材料热处理学报, 2013; 34(6): 75)
[4] Dai J Y, Yin Z M, Song L P, Yuan Y. Chin J Nonferrous Met, 2009; 19: 1969
[4] (戴娇燕, 尹志民, 宋练鹏, 袁 远. 中国有色金属学报, 2009; 19: 1969)
[5] Cao H, Min J Y, Wu S D, Xian A P, Shang J K. Mater Sci Eng, 2006; A431: 86
[6] Lu D P, Wang J, Zeng W J, Liu Y, Lu L, Sun B D. Mater Sci Eng, 2006; A421: 254
[7] Kim H G, Lee T W, Han S Z, Euh K, Kim W Y, Lim S H. Met Mater Int, 2012; 18: 335
[8] Yan X D, Tu S J, Huang G J, Xie S S. Chin J Rare Met, 2005; 29: 635
[8] (闫晓东, 涂思京, 黄国杰, 谢水生. 稀有金属, 2005; 29: 635)
[9] Shigenori H, Shigeoki S. J Jpn Copper Brass Res Assoc, 1970; 9: 201
[9] (堀茂徳, 佐治重興. 伸銅技術研究會誌, 1970; 9: 201)
[10] Baker H.ASM Handbook-Alloy Phase Diagrams. Materials Park, Ohio: ASM International, 1992: 734
[11] Matsuura K, Tsukamoto M, Watanabe K. Acta Metall, 1973; 21: 1033
[12] Kinsman K R, Sprys J W, Asaro R J. Acta Metall, 1975; 23: 1431
[13] Easterling K E, Miekk-oja H M. Acta Metall, 1967; 15: 1133
[14] Lifshitz I M, Slyozov V V. J Phys Chem Solids, 1961; 19: 35
[15] Wagner C. Z Elektrochem, 1961; 65: 581
[16] Mackliet C A. Phys Rev, 1958; 109: 1964
[17] Ardell A J. Metall Trans, 1985; 16A: 2131
[18] Martienssen W, Warlimont H.Springer Handbook of Condensed Matter and Materials Data. Heidelberg, Berlin: Springer, 2005: 132
[19] Lee J, Jung J Y, Lee E S, Park W J, Ahn S, Kim N J. Mater Sci Eng, 2000; A277: 274
[20] Donoso E, Espinoza R, Dianez M J, Criado J M. Mater Sci Eng, 2012; A556: 612
[21] Pang Y, Xia C D, Wang M P, Li Z, Xiao Z, Wei H G, Sheng X F, Jia Y L, Chen C. J Alloys Compd, 2014; 582: 786
[22] Guo M X, Shen K, Wang M P. Acta Mater, 2009; 57: 4568
[1] 朱鸣芳, 邢丽科, 方辉, 张庆宇, 汤倩玉, 潘诗琰. 合金凝固枝晶粗化的研究进展[J]. 金属学报, 2018, 54(5): 789-800.
[2] 张宇, 王清, 董红刚, 董闯, 张洪宇, 孙晓峰. 基于团簇模型设计的镍基单晶高温合金(Ni, Co)-Al-(Ta, Ti)-(Cr, Mo, W)及其在900 ℃下1000 h的长期时效行为[J]. 金属学报, 2018, 54(4): 591-602.
[3] 王晨充,张弛,杨志刚,苏杰,翁宇庆. 高Co-Ni二次硬化钢的设计准则与时效工艺分析[J]. 金属学报, 2017, 53(2): 175-182.
[4] 张可, 孙新军, 雍岐龙, 李昭东, 杨庚蔚, 李员妹. 回火时间对高Ti微合金化淬火马氏体钢组织及力学性能的影响*[J]. 金属学报, 2015, 51(5): 553-560.
[5] 邸新杰, 邢希学, 王宝森. Inconel 625熔敷金属中δ相的形核与粗化机理*[J]. 金属学报, 2014, 50(3): 323-328.
[6] 王学, 于淑敏, 任遥遥, 刘洪, 刘洪伟, 胡磊. P92钢时效的Laves相演化行为[J]. 金属学报, 2014, 50(10): 1195-1202.
[7] 谭梅林, 王常帅, 郭永安, 郭建亭, 周兰章. Ti/Al比对GH984G合金长期时效过程中γ′沉淀相粗化行为及拉伸性能的影响[J]. 金属学报, 2014, 50(10): 1260-1268.
[8] 赵彦,张洪宇,韦华,郑启,金涛,孙晓峰. 相场法研究含第二相颗粒多晶体系的晶粒粗化标度律[J]. 金属学报, 2013, 49(8): 981-988.
[9] 曾强,燕平,邵冲,赵京晨,韩凤奎,张龙飞. K480铸造镍基高温合金900 ℃高温时效过程中晶界粗化行为研究[J]. 金属学报, 2013, 49(1): 63-70.
[10] 周广钊,王永欣,陈铮. 相场法模拟弹性应变能对Ti-Al-Nb合金 α2→ O相变粗化动力学的影响[J]. 金属学报, 2012, 48(4): 485-491.
[11] 宫博 文胜平 黄晖 聂祚仁. 退火过程Al-6Mg-0.7Mn-0.1Zr-0.3Er合金中纳米Al3(ZrxEr1-x)析出相的演化[J]. 金属学报, 2010, 46(7): 850-856.
[12] 王小京 祝清省 王中光 尚建库. Ag3Sn粗化模型及其对Sn-Ag-Cu焊料蠕变的影响[J]. 金属学报, 2009, 45(8): 912-918.
[13] 姜庆伟 刘印 王尧 晁月盛 李小武. 超细晶铜在退火与高温变形条件下微观结构的不稳定性研究[J]. 金属学报, 2009, 45(7): 873-879.
[14] 雷文平 沈 健 毛柏平 李俊鹏 闫亮明. Al--5.2Cu--0.4Mg--1.02Ag合金的时效析出行为研究[J]. 金属学报, 2009, 45(5): 579-584.
[15] 刘庆冬 褚于良 彭剑超 刘文庆 周邦新. 回火马氏体中合金碳化物的3D原子探针表征 III. 粗化[J]. 金属学报, 2009, 45(11): 1297-1302.