Please wait a minute...
金属学报  2013, Vol. 49 Issue (5): 537-543    DOI: 10.3724/SP.J.1037.2013.00014
  论文 本期目录 | 过刊浏览 |
偏晶合金在激光表面处理条件下的凝固行为研究
陈书,赵九洲
中国科学院金属研究所, 沈阳 110016
SOLIDIFICATION OF MONOTECTIC ALLOY UNDER LASER SURFACE TREATMENT CONDITIONS
CHEN Shu, ZHAO Jiuzhou
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
引用本文:

陈书,赵九洲. 偏晶合金在激光表面处理条件下的凝固行为研究[J]. 金属学报, 2013, 49(5): 537-543.
CHEN Shu, ZHAO Jiuzhou. SOLIDIFICATION OF MONOTECTIC ALLOY UNDER LASER SURFACE TREATMENT CONDITIONS[J]. Acta Metall Sin, 2013, 49(5): 537-543.

全文: PDF(2052 KB)  
摘要: 

开展了激光表面处理条件下Al-Pb合金的快速凝固实验, 获得了富Pb相粒子弥散分布于Al基体的合金表面层, 原合金表层内富Pb相粒子经激光表面处理后得到明显细化. 分析了激光表面处理层的凝固组织特征, 建立了激光表面处理条件下偏晶合金组织演变模型,模拟计算了Al-Pb偏晶合金表面处理层凝固组织形成的动力学过程. 实验和模拟相结合, 分析了合金表面处理层在升温熔化、富Pb相液滴溶解及熔体均匀化和冷却凝固过程中的组织演变为. 结果表明, 激光表面处理技术是获得富Pb相高度弥散分布的Al-Pb合金表面层的有效方法.

关键词 偏晶合金快速凝固激光表面处理    
Abstract

Monotectic alloys have great potentials to be used in industry due to their special physical and mechanical properties. But these alloys have an essential drawback that just the miscibility gap in the liquid state poses problem during solidification. When a homogeneous, single-phase liquid is cooled into the miscibility gap, the components are no longer miscible and two liquid phases develop. Generally, the liquid-liquid decomposition causes the formation of the microstructure with serious phase segregation. Recent researches demonstrate that the only effective method to prevent the formation of the phase segregated microstructure in the immiscible alloys is using the rapid or sub-rapid solidification processing techniques. Laser surface treatment is a well known rapid solidification technique. It is widely applied in the industry to improve the surface properties of different type of alloys. But up to date, the solidification behaviors of the monotectic alloys under the laser surface treatment conditions have not been investigated. In this work, laser surface treatment experiments with Al-Pb alloys were carried out. A numerical model was developed to describe the microstructure evolution in the surface layer of Al-Pb alloys under the conditions of laser surface treatment. The model was applied to calculate the microstructure formation in the surface layer. The numerical results have a good agreement with the experimental ones. Both of the numerical and experimental results indicate that the microstructure of the laser treated surface layer is determined by the re-melting, composition homogenization and solidification of the alloy. Laser surface treatment can lead to the formation of an Al-Pb surface layer with well dispersed microstructure.

Key wordsmonotectic alloy    rapid solidification    laser surface treatment
收稿日期: 2013-01-09     
基金资助:

国家自然科学基金项目51071159, 51271185 和 51031003

作者简介: 陈书, 男, 1986年生, 博士生

[1] Wang C P, Liu X J, Ohnuma I, Kainuma R, Ishida K.  Science, 2002; 297: 990


[2] Xian A P, Zhang X M, Li Z Y.  Acta Metall Sin, 1996; 32: 113

(冼爱平, 张修睦, 李忠玉. 金属学报, 1996; 32: 113)

[3] Li H L, Zhao J Z.  Acta Metall Sin, 2011; 47: 87

(李海丽, 赵九洲. 金属学报, 2011; 47: 87)

[4] Rudrakshi G B, Srivastava V C, Pathak J P, Ojha S N.  Mater Sci Eng, 2004; A383: 30

[5] Carberg T, Fredriksson H.  Metall Trans, 1982; 11A: 1665

[6] Zhao J Z, Gao L L, He J.  Appl Phys Lett, 2005; 87: 131905-1

[7] He J, Zhao J Z, Ratke L.  Acta Mater, 2006; 54: 1794

[8] An J, Dong C, Zhang Q Y.  Tribol Int, 2003; 36: 25

[9] Liu Y, Guo J J, Su Y Q, Ding H S, Jia J.  Chin J Nonferrous Met, 2001; 11: 84

(刘源, 郭景杰, 苏彦庆, 丁宏升, 贾均. 中国有色金属学报, 2001; 11: 84)

[10] Lu X Y, Cao C D, Kolbe M, Wei B B, Herlach D.  Mater Sci Eng, 2004; A375: 1101

[11] Zhao J Z.  Scr Mater, 2006; 54: 247

[12] He J, Zhao J Z, Ratke L.  Acta Mater, 2006; 54: 1749

[13] Zhao L, Zhao J Z.  Acta Metall Sin, 2012; 48: 1381

(赵雷, 赵九洲. 金属学报, 2012; 48: 1381)

[14] Muntz A.  Metall Trans, 1985; 16B: 149

[15] Sun Z, Annergren I, Pan D, Mai T A.  Mater Sci Eng, 2003; A345: 293

[16] Christodoublou G, Walker A, Steen W M, West D R F.  Met Technol, 1983; 10: 215

[17] Kac S, Kusinski J.  Mater Chem Phys, 2003; 81: 510

[18] Peng Q F, Shi Z, Bloyce A, Bell T.  Mater Sci Technol, 1990; 6: 999

[19] Boccalini M, Goldenstein H.  Int Mater Rev, 2001; 46: 92

[20] Leif A.  Metall Trans, 1984; 15A: 1831

[21] Lei Y P, Murakawa H, Shi Y W, Li X Y.  Comput Mater Sci, 2001; 21: 276

[22] Marquesee J A, Ross J.  J Chem Phys, 1983; 79: 373

[23] Marquesee J A, Ross J.  J Chem Phys, 1984; 80: 536

[24] Uebber N, Ratke L.  Scr Metall Mater, 1991; 25: 1133

[25] Granasy L, Ratke L.  Scr Metall Mater, 1993; 28: 1329

[26] Sommer F.  Z Metallkd, 1996; 87: 865

[27] Yu S K, Sommer F.  Z Metallkd, 1996; 87: 574

[28] Merkwitz M, Weise J, Thriener K, Hoyer W.  Z Metallkd, 1998; 89: 247

[29] Zhao J Z, Li H L, Zhang X F, He J, Ratke L.  Int J Mater Res, 2009; 100: 46

[1] 梁琛, 王小娟, 王海鹏. 快速凝固Ti-Al-Nb合金B2相形成机制与显微力学性能[J]. 金属学报, 2022, 58(9): 1169-1178.
[2] 吴国华, 陈玉狮, 丁文江. 高性能镁合金凝固组织控制研究现状与展望[J]. 金属学报, 2018, 54(5): 637-646.
[3] 李金富, 周尧和. 液态金属深过冷快速凝固过程中初生固相的重熔[J]. 金属学报, 2018, 54(5): 627-636.
[4] 翟斌, 周凯, 吕鹏, 王海鹏. 自由落体条件下Ti-6Al-4V合金微液滴的快速凝固研究[J]. 金属学报, 2018, 54(5): 824-830.
[5] 谷倩倩, 阮莹, 朱海哲, 闫娜. 冷却速率对急冷Fe-Al-Nb三元合金凝固组织形成的影响[J]. 金属学报, 2017, 53(6): 641-647.
[6] 黄火根,徐宏扬,张鹏国,王英敏,柯海波,张培,刘天伟. 具有反常非晶形成能力的U-Cr二元合金[J]. 金属学报, 2017, 53(2): 233-238.
[7] 王中原,何杰,杨柏俊,江鸿翔,赵九洲,王同敏,郝红日. Zr-Ce-Co-Cu难混溶合金的液-液相分离和双非晶相形成*[J]. 金属学报, 2016, 52(11): 1379-1387.
[8] 赵雷,江鸿翔,AHMAD Tauseef,赵九洲. Cu-Co-Fe合金雾化合金液滴凝固过程研究*[J]. 金属学报, 2015, 51(7): 883-888.
[9] 陈枫,苏德喜,佟运祥,牛立群,王海波,李莉. Ni43Co7Mn41Sn9高温形状记忆合金薄带的结构和相变[J]. 金属学报, 2013, 49(8): 976-980.
[10] 李少强,陈志勇,王志宏,刘建荣,王清江,杨锐. 一种快速凝固粉末冶金高温钛合金微观组织特征研究[J]. 金属学报, 2013, 29(4): 464-474.
[11] 盛立远,章炜,赖琛,郭建亭,奚廷斐,叶恒强. 快速凝固制备Laves相增强NiAl基复合材料的微观组织及力学性能[J]. 金属学报, 2013, 49(11): 1318-1324.
[12] 李慧,梁永锋,贺睿琦,林均品,叶丰. 快速凝固Fe-6.5%Si合金有序结构及力学性能研究[J]. 金属学报, 2013, 49(11): 1452-1456.
[13] 莫云飞 刘让苏 梁永超 郑乃超 周丽丽 田泽安 彭平. ZnxAl100-x合金快凝过程中微结构演变特性的分子动力学模拟[J]. 金属学报, 2012, 48(8): 907-914.
[14] 赵雷 赵九洲. Ni-Ag偏晶合金凝固过程研究[J]. 金属学报, 2012, 48(11): 1381-1386.
[15] 周圣银 胡锐 蒋力 李金山 寇宏超 常辉 周廉. 深过冷凝固Co80Pd20合金中的枝晶生长[J]. 金属学报, 2011, 47(4): 391-396.