Please wait a minute...
金属学报  2011, Vol. 47 Issue (12): 1520-1526    DOI: 10.3724/SP.J.1037.2011.00372
  论文 本期目录 | 过刊浏览 |
准晶增强的Mg-Zn-Al-(Y)合金热压缩变形行为
童剑1,2,黄华1,2,袁广银1,2,丁文江1,2
1. 上海交通大学材料科学与工程学院轻合金精密成型国家工程研究中心, 上海 200240
2. 上海交通大学材料科学与工程学院金属基复合材料国家重点实验室, 上海 200240
HOT COMPRESSION DEFORMATION BEHAVIOR OF Mg–Zn–Al–(Y) ALLOYS REINFORCED WITH QUASICRYSTAL
TONG Jian 1,2, HUANG Hua 1,2, YUAN Guangyin 1,2, DING Wenjiang 1,2
1. Light Alloy Net Forming National Engineering Research Center, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240
2. The State Key Laboratory of Metal Matrix Composite, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240
引用本文:

童剑 黄华 袁广银 丁文江. 准晶增强的Mg-Zn-Al-(Y)合金热压缩变形行为[J]. 金属学报, 2011, 47(12): 1520-1526.
, , , . HOT COMPRESSION DEFORMATION BEHAVIOR OF Mg–Zn–Al–(Y) ALLOYS REINFORCED WITH QUASICRYSTAL[J]. Acta Metall Sin, 2011, 47(12): 1520-1526.

全文: PDF(867 KB)  
摘要: 通过常规金属型铸造工艺制备准晶相增强的Mg-8Zn-4Al(ZA84)和Mg-8Zn-4Al-0.5Y(ZAY8405)合金, 采用Gleeble-1500热模拟试验机在温度230 ℃和应变速率0.0015-1.5 s-1的条件下, 对准晶增强的Mg-Zn-Al-(Y)合金的热压缩变形行为进行了研究. 结果表明: ZA84和ZAY8405合金铸态组织主要由二十面体准晶和α-Mg所组成, Y的加入可进一步细化凝固过程中形成的准晶相;Mg-Zn-Al-(Y)合金热变形过程中合金发生典型的动态再结晶,流变应力随应变速率增大而增大, 并可通过幂指数模型进行描述,应变速率变化对ZAY8405合金流变应力的影响更大; 热变形过程中,准晶可促进Mg-Zn-Al-(Y)合金的动态再结晶, ZAY8405合金中弥散分布的细小准晶以及Y的加入更有利于孪生和动态再结晶的发生.
关键词 Mg-Zn-Al-(Y)合金 二十面体准晶 热压缩变形 动态再结晶    
Abstract:Quasicrystal phase offers a good combination of strength and ductility due to the strong interface between the quasicrystal phase and the Mg–matrix. Hot compression tests of Mg–Zn–Al–(Y) based alloys reinforced with quasicrystal were performed on Gleeble–1500 thermal simulation machine at a constant deformation temperature of 230℃ and strain rates ranged from 0.0015 s−1 to 1.5 s−1. Microstructure evolution of hot–compressed Mg–Zn–Al–(Y) alloys and the relationship between flow stress and strain rate were studied. XRD and SAED results show that the microstructures of as–cast Mg–8Zn–4Al (ZA84) andMg–8Zn–4Al–0.5Y (ZAY8405) are composed of icosahedral quasicrystal phase and α-Mg matrix. The quasicrystals in ZA84 and ZAY8405 alloys have a stoichiometric composition of Mg38Zn43Al19 and Mg51Zn30Al19 respectively. Dynamic recrystalization (DRX) take place during hot compression and the flow stress increases with increase of strain rate at constant compression temperature, which can be represented by the Power Exponential Equation. Deformation twinning and dynamic recrystalization are easier to take place in ZAY8405 alloys due to the refined and dispersed quasicrystal phase with Y addition.
Key wordsMg–Zn–Al–(Y) alloy    icosahedral quasicrystal    hot compression deformation    dynamic recrystalization
收稿日期: 2011-06-17     
基金资助:

国家自然科学基金项目51174136, 教育部博士点专项基金项目20100073110004和上海市基础研究重点项目10JC1407400资助

作者简介: 童剑, 男, 1985年生, 硕士生
[1] Decker R F. Adv Mater Processes, 1998; 154(3): 31

[2] Liu Q. Acta Metall Sin, 2010; 46: 1458

(刘庆. 金属学报, 2010; 46: 1458)

[3] Lu Y Z, Wang Q D, Ding W J. Mater Lett, 2000; 44: 265

[4] Mukai T, Yamanoi M,Watanabe H, Higashi K. Scr Mater,2001; 45: 89

[5] Kim W J, Hong S I, Kim Y S. Acta Mater, 2003; 51: 3293

[6] Yang X Y, Zhang L. Acta Metall Sin, 2009; 45: 1303

(杨续跃, 张 雷. 金属学报, 2009; 45: 1303)

[7] Jin Q L, Shim S Y, Lim S G. Scr Mater, 2006; 55: 843

[8] Shechtman D, Blech I, Gratias D, Cahn J W. Phys Rev Lett, 1984; 53: 1951

[9] Yuan G Y, Liu Y, DingWJ. Mater Sci Eng, 2008; A474: 348

[10] Liu Y, Yuan G Y, Lu C. J Mater Sci, 2008; 43: 5527

[11] Somekawa H, Singh A, Mukai T. Adv Eng Mater, 2009; 11: 782

[12] Yuan G Y, Amiya K, Kato H, Inoue A. J Mater Res, 2008; 19: 1531

[13] Elser V. Phys Rev, 1985; 32B: 4892

[14] Bourgeois L, Mendis C L, Muddle B C. Philos Mag Lett, 2001; 81: 709

[15] Vogel M, Kraft O, Behm G. Scr Mater, 2001; 45: 517

[16] Galiyev A, Kaibyshev R, Gottstein G. Acta Mater, 2001; 49: 1199

[17] Agnew S R, Yoo M H, Tome C N. Acta Mater, 2001; 49: 4277

[18] Li Z J, Jin Q L, Jiang Y H, Zhou R. Acta Metall Sin, 2009; 45: 924

(李再久, 金青林, 蒋业华, 周荣. 金属学报, 2009; 45: 924)

[19] Bae D H, Kim S H, Kim D H, Kim W T. Acta Mater, 2002; 50: 2343

[20] Singh A, Watanabe M, Kato A, Tsai A P. Sci Technol Adv Mater, 2005; 6: 895

[21] Lee J Y, Lim H K, Kim D H, Kim W T, Kim D H. Mater Sci Eng, 2008; A491: 349

[22] Hu G X, Cai X. Fundamental of Material Science. Shanghai: Shanghai Jiao Tong University Press, 2004: 193

(胡赓祥, 蔡旬.材料科学基础. 上海: 上海交通大学出版社, 2004: 193)

[23] Yu K, Shi T, Wang R C, Li W X, Wang X Y, Cai Z Y. J Cent South Univ (Sci Technol), 2008; 39: 216

(余琨, 史提, 王日初, 黎文献, 王晓艳, 蔡志勇.中南大学学报(自然科学版), 2008; 39: 216)

[24] Poirier J P, translated by Guan D L. The Plastic Deformation of Crystals at High Temperature. Dalian: Dalian University of Science and Technology Press, 1989: 25

(Poirier J P著, 关德林译. 晶体的高温塑性变形. 大连: 大连理工大学出版社,1989: 25)

[25] Takuda H, Fujimoto H, Hatta N. J Mater Process Technol,1998; 80–81: 513
[1] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[2] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[3] 娄峰, 刘轲, 刘金学, 董含武, 李淑波, 杜文博. 轧制态Mg-xZn-0.5Er合金板材组织及室温成形性能[J]. 金属学报, 2023, 59(11): 1439-1447.
[4] 吴彩虹, 冯迪, 臧千昊, 范诗春, 张豪, 李胤樹. 喷射成形AlSiCuMg合金的热变形组织演变及再结晶行为[J]. 金属学报, 2022, 58(7): 932-942.
[5] 任少飞, 张健杨, 张新房, 孙明月, 徐斌, 崔传勇. 新型Ni-Co基高温合金塑性变形连接中界面组织演化及愈合机制[J]. 金属学报, 2022, 58(2): 129-140.
[6] 姜伟宁, 武晓龙, 杨平, 顾新福, 解清阁. 热轧硅钢表层动态再结晶区形成规律及剪切织构特征[J]. 金属学报, 2022, 58(12): 1545-1556.
[7] 倪珂, 杨银辉, 曹建春, 王刘行, 刘泽辉, 钱昊. 18.7Cr-1.0Ni-5.8Mn-0.2NNi型双相不锈钢的大变形热压缩软化行为[J]. 金属学报, 2021, 57(2): 224-236.
[8] 赵嫚嫚, 秦森, 冯捷, 代永娟, 国栋. AlNi1Cr9Al(1~3)Ni(1~7)WVNbB钢热变形行为的影响[J]. 金属学报, 2020, 56(7): 960-968.
[9] 陈文雄, 胡宝佳, 贾春妮, 郑成武, 李殿中. 热变形后Ni-30%Fe模型合金中奥氏体的亚动态软化行为[J]. 金属学报, 2020, 56(6): 874-884.
[10] 张阳, 邵建波, 陈韬, 刘楚明, 陈志永. Mg-5.6Gd-0.8Zn合金多向锻造过程中的变形机制及动态再结晶[J]. 金属学报, 2020, 56(5): 723-735.
[11] 武华健, 程仁山, 李景仁, 谢东升, 宋锴, 潘虎成, 秦高梧. Al含量对Mg-Sn-Ca合金微观组织与力学性能的影响[J]. 金属学报, 2020, 56(10): 1423-1432.
[12] 张勇, 李鑫旭, 韦康, 万志鹏, 贾崇林, 王涛, 李钊, 孙宇, 梁红艳. 850 ℃涡轮盘用新型变形高温合金GH4975挤压棒材热变形规律研究[J]. 金属学报, 2020, 56(10): 1401-1410.
[13] 李旭,杨庆波,樊祥泽,呙永林,林林,张志清. 变形参数对2195 Al-Li合金动态再结晶的影响[J]. 金属学报, 2019, 55(6): 709-719.
[14] 邓亚辉,杨银辉,曹建春,钱昊. 23Cr-2.2Ni-6.3Mn-0.26NNi型双相不锈钢动态再结晶行为研究[J]. 金属学报, 2019, 55(4): 445-456.
[15] 万志鹏, 王涛, 孙宇, 胡连喜, 李钊, 李佩桓, 张勇. GH4720Li合金热变形过程动态软化机制[J]. 金属学报, 2019, 55(2): 213-222.