Please wait a minute...
金属学报  2017, Vol. 53 Issue (7): 789-796    DOI: 10.11900/0412.1961.2016.00538
  本期目录 | 过刊浏览 |
钢中第二相粒子形貌预报理论和检测方法
郭靖1,2,郭汉杰1,2(),方克明1,段生朝1,2,石骁1,2,杨文晟1,2
1 北京科技大学冶金与生态工程学院 北京 100083
2 北京科技大学高端金属材料特种熔炼与制备北京市重点实验室 北京 100083
Morphology Prediction Theory and Experimental Measurement for the Secondary Phase Particle in Steel
Jing GUO1,2,Hanjie GUO1,2(),Keming FANG1,Shengchao DUAN1,2,Xiao SHI1,2,Wensheng YANG1,2
1 School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
2 Beijing Key Laboratory of Special Melting and Preparation of High-End Metal Materials, University of Science and Technology Beijing, Beijing 100083, China
引用本文:

郭靖,郭汉杰,方克明,段生朝,石骁,杨文晟. 钢中第二相粒子形貌预报理论和检测方法[J]. 金属学报, 2017, 53(7): 789-796.
Jing GUO, Hanjie GUO, Keming FANG, Shengchao DUAN, Xiao SHI, Wensheng YANG. Morphology Prediction Theory and Experimental Measurement for the Secondary Phase Particle in Steel[J]. Acta Metall Sin, 2017, 53(7): 789-796.

全文: PDF(1172 KB)   HTML
摘要: 

控制钢中第二相粒子(包括非金属夹杂物和碳氮化物)的形貌对降低非金属夹杂物的危害、提高钢材力学性能等具有重要作用。本工作通过引入Jackson α指数建立了钢中第二相粒子形貌的预测理论模型,指出钢中第二相粒子形貌由其熔化熵、生长方向和温度(过冷度)决定。通过非水溶液电解的方法和室温有机溶液包埋(RTO)技术,结合SEM分析了4个钢种各类夹杂物的三维形貌以及其内部特征,实测的第二相粒子形貌与理论预测一致。理论和实验观察结果均证明,当第二相粒子Jackson α指数大于3时,其形貌为小面状;Jackson α指数小于2时,呈非小面状。

关键词 第二相粒子形貌Jackson α指数熔化熵非水溶液电解RTO技术    
Abstract

It is significant to reduce the negative effects of non-metallic inclusion on steel and to improve steel mechanical properties through controlling the morphology of the secondary phase particle including non-metallic inclusion, nitride and carbide. Compared with particles with irregular shape, globular second phase particle could reduce the stress concentration during rolling and heat treatment process obviously and lower its harmfulness to steel toughness. A theoretical model to predict the morphology of the secondary phase particle in steel has been established by introducing a dimensionless Jackson α factor, and the morphology of the secondary phase particle is determined by its dissolved entropy, growth direction and temperature or undercooling. Non-aqueous solution electrolysis extraction and room temperature organic (RTO) technique were applied to detect the 3D morphology of the secondary phase particle and its inner morphology combining with SEM. The morphologies of particles observed in four different types of steels are in good agreement with the theoretical predictions. Theoretical predictions and experimental observation were both confirmed that the secondary phase particle is faceted in morphology when its Jackson α factor is more than 3 and non-faceted when its Jackson α factor less than 2.

Key wordssecondary phase particle    morphology    Jackson α factor    dissolved entropy    non-aqueous solution electrolysis    RTO technique
收稿日期: 2016-11-28     
基金资助:国家自然科学基金钢铁联合研究基金项目No.U1560203及中央高校基本科研业务费专项资金项目No.FRF-TP-16-079A1
图1  不同Jackson α指数时晶体/熔体界面相对自由能与界面晶体原子占比的关系
图2  非水溶液电解装置示意图.
图3  RTO技术包埋和“切开”第二相粒子步骤示意图
Steel grade C Si Mn P S Als Ti Cr Ni Mo Co
A 0.04 0.02 0.15 0.01 0.005 0.04 0.06 - - - -
B 0.05 0.50 1.10 0.01 0.008 - - 18.22 8.10 - -
C 0.03 0.29 0.13 0.014 0.002 5.20 0.12 24.20 0.12 - -
D 1.14 0.50 0.60 0.03 0.007 - 0.0049 4.70 - 9.30 8.10
表1  实验所用钢种及成分
图4  B钢中使用电解法收集的第二相粒子和RTO技术切开后的第二相粒子形貌
Particle type Crystalline structure ξ(hkl) Tm/ K ΔHm/ (kJmol-1) α
Al2O3 (corundum) hcp 0.5~1.0 2327 118.41 3.06~6.12
AlN (S-G)* hcp 0.5~1.0 4349 189.61 2.62~5.24
SiO2 (quartz) Tetragonal 0.5~1.0 1996 9.58 0.29~0.58
CaO (lime) fcc 0.5~1.0 2845 28.50 1.18~3.36
CaF2 cubic 0.5~1.0 1691 29.71 1.06~2.11
FeO fcc 0.5~1.0 1650 24.06 0.43~0.86
MgO fcc 0.5~1.0 3098 77.40 1.51~3.01
MnO fcc 0.5~1.0 2058 54.39 1.59~3.18
MnS fcc 0.5~1.0 1803 26.11 0.44~0.87
NbO fcc 0.5~1.0 2218 54.39 1.48~2.95
Nb2O3 0.5~1.0 1785 102.93 3.47~6.94
NiO fcc 0.5~1.0 2230 50.68 1.37~2.73
TiC fcc 0.5~1.0 3290 71.13 1.38~2.76
TiN fcc 0.5~1.0 2023 54.39 3.15~6.29
TiO 0.5~1.0 2112 110.46 4.06~8.11
Ti2O3 0.5~1.0 2047 138.07 1.88~3.76
Ti3O5 0.5~1.0 2143 66.94 4.17~8.33
TiO2 0.5~1.0 943 66.27 1.78~3.55
V2O5 0.5~1.0 2950 87.03 3.15~6.29
ZrO2 0.5~1.0 2023 54.39 4.06~8.11
MgAl2O4 - 0.5~1.0 2381 160.65 4.06~8.12
CaSiO3 - 0.5~1.0 1813 (1817) 57.00 (56.07) 1.85~3.70
CaAl4O7 - 0.5~1.0 2038 128.4 3.79~7.57
CaAl2O4 0.5~1.0 1877 55.0 1.76~3.51
Ca12Al14O33 0.5~1.0 1709 432.0 15.19~30.38
Ca3Al2O6 0.5~1.0 1814 72.0 5.59~11.18
表2  钢中典型第二相粒子的Jackson α指数[22,23]
图5  A钢中Al2O3、MgAl2O4和TiN典型形貌
图6  使用非水溶液电解后钢中非金属夹杂物的典型形貌
图7  用RTO技术包埋并“切开”后第二相粒子的内部形貌
图8  C钢中典型氮化物及D钢中典型碳化物的形貌
[1] Záhumensky P, Merwin M.Evolution of artificial defects from slab to rolled products[J]. J. Mater. Process. Technol., 2008, 196: 266
[2] Yu H L, Bi H Y, Liu X H, et al.Behavior of inclusions with weak adhesion to strip matrix during rolling using FEM[J]. J. Mater. Process. Technol., 2009, 209: 4274
[3] Jiang L Z, Cui K, H?nninen H.Effects of the composition, shape factor and area fraction of sulfide inclusions on the machinability of re-sulfurized free-machining steel[J]. J. Mater. Process. Technol., 1996, 58: 160
[4] Shao X J, Wang X H, Jiang M, et al.In situ observation of MnS inclusion behavior in resulfurized Free cutting steel during heating[J]. Acta Metall. Sin., 2011, 47: 1210
[4] (邵肖静, 王新华, 姜敏等. 加热过程中硫系易切削钢中MnS夹杂物行为的动态原位观察. 金属学报,2011, 47: 1210)
[5] Kim S H, Kim H, Kim N J.Brittle intermetallic compound makes ultrastrong low-density steel with large ductility[J]. Nature, 2015, 518: 77
[6] Jackson K A.Growth and Perfection of Crystals[M]. New York: John Wiley and Sons Inc., 1958: 319
[7] Jackson K A.Liquid Metals and Solidification[M]. Ohio, Metals Park: ASM, 1958: 174
[8] Li D, Herlach D M.Direct measurements of free crystal growth in deeply undercooled melts of semiconducting materials[J]. Phys. Rev. Lett., 1996, 77: 1801
[9] Lu Y P, Yang G C, Liu F, et al.The transition of alpha-Ni phase morphology in highly undercooled eutectic Ni78.6Si21.4 alloy[J]. Europhys. Lett., 2006, 74: 281
[10] Lipton J, Kurz W, Trivedi R.Rapid dendrite growth in undercooled alloys[J]. Acta Metall., 1987, 35: 957
[11] Lofgren G.An experimental study of plagioclase crystal morphology; isothermal crystallization[J]. Am. J. Sci., 1974, 274: 243
[12] Kirkpatrick R J.Crystal growth from the melt: A review[J]. Am. Mineral., 1975, 60: 798
[13] Heulens J, Blanpain B, Moelans N.Analysis of the isothermal crystallization of CaSiO3 in a CaO-Al2O3-SiO2 melt through in situ observations[J]. J. Eur. Ceram. Soc., 2011, 31: 1873
[14] Li J L, Shu Q F, Chou K.Effect of agitation on crystallization behavior of CaO-Al2O3-SiO2-Na2O-CaF2 mold fluxes with varying basicity[J]. Metall. Mater. Trans., 2015, 46B: 1555
[15] Hill A.Entropy production as the selection rule between different growth morphologies[J]. Nature, 1990, 348: 426
[16] Berge B, Faucheux L, Schwab K, et al.Faceted crystal growth in two dimensions[J]. Nature, 1991, 350: 322
[17] Van Ende M A, Guo M X, Proost J, et al. Formation and morphology of Al2O3 inclusions at the onset of liquid Fe deoxidation by Al addition[J]. ISIJ Int., 2011, 51: 27
[18] Ye Z C, Wang S Y, Wang X C.Study of inclusions in IF steel[J]. Acta Metall. Sin., 1999, 35: 1057
[18] (叶仲超, 王石杨, 汪晓川. IF钢中的夹杂物[J]. 金属学报, 1999, 35: 1057)
[19] Guo J, Seo M D, Shi C B, et al.Control of crystal morphology for mold flux during high-aluminum AHSS continuous casting process[J]. Metall. Mater. Trans., 2016, 47B: 2211
[20] Fang K M, Wang G C.Study on non-metallic inclusions in steel from characterization to denaturation[J]. J. Chin. Rare Earth Soc., 2006, 24(Spec. Issue): 439
[20] (方克明, 王国承. 钢中的夹杂物研究从表征到改性[J]. 中国稀土学报, 2006, 24(专辑): 439)
[21] Jackson K A, Uhlmann D R, Hunt J D.On the nature of crystal growth from the melt[J]. J. Cryst. Growth, 1967, 1: 1
[22] Barin I, Knacke O.Thermochemical Properties of Inorganic Substances[M]. Berlin Heidelberg: Springer-Verlag, 1973: 73
[23] Barin I, Knacke O, Kubaschewski O.Thermochemical Properties of Inorganic Substances: Supplement[M]. Berlin Heidelberg: Springer-Verlag, 1977: 49
[24] Kim H S, Lee H G, Oh K S.MnS precipitation in association with manganese silicate inclusions in Si/Mn deoxidized steel[J]. Metall. Mater. Trans., 2001, 32A: 1519
[25] Wang K P, Jiang M, Wang X H, et al.Formation mechanism of SiO2-type inclusions in Si-Mn-killed steel wires containing limited aluminum content[J]. Metall. Mater. Trans., 2015, 46B: 2198
[26] Luo Y W, Guo H J, Chen X C.Effect of nitrogen on the microstructure of AISI M42 high-speed steel [A]. AISTech - Iron and Steel Technology Conference Proceedings[C]. Pittsburgh, USA: 2016: 1123
[27] Ning A G, Guo H J, Chen X C, et al.Precipitation behaviors and strengthening of carbides in H13 steel during annealing[J]. Mater. Trans., 2015, 56: 581
[1] 刘继浩, 周健, 武会宾, 马党参, 徐辉霞, 马志俊. 喷射成形M3高速钢偏析成因及凝固机理[J]. 金属学报, 2023, 59(5): 599-610.
[2] 李民, 李昊泽, 王继杰, 马颖澈, 刘奎. 稀土Ce对薄带连铸无取向6.5%Si钢组织、高温拉伸性能和断裂模式的影响[J]. 金属学报, 2022, 58(5): 637-648.
[3] 刘海霞, 陈金豪, 陈杰, 刘光磊. NaCl溶液腐蚀后304不锈钢的射流空蚀特征[J]. 金属学报, 2020, 56(10): 1377-1385.
[4] 郑成明, 田青超. 合金元素对顶头钢氧化行为的影响[J]. 金属学报, 2019, 55(4): 427-435.
[5] 徐文胜, 张文征. 先共析渗碳体上形核的珠光体晶体学研究[J]. 金属学报, 2019, 55(4): 496-510.
[6] 陈星晨, 王杰, 陈德任, 钟舜聪, 王向峰. Na对于Al早期大气腐蚀的影响[J]. 金属学报, 2019, 55(4): 529-536.
[7] 曹丽华, 陈胤伯, 史起源, 远杰, 刘志权. 合金元素对中温Sn-Ag-Cu焊料互连组织及剪切强度的影响[J]. 金属学报, 2019, 55(12): 1606-1614.
[8] 金辰日, 杨素媛, 邓学元, 王扬卫, 程兴旺. 纳米晶化对锆基非晶合金动态压缩性能的影响[J]. 金属学报, 2019, 55(12): 1561-1568.
[9] 王宝刚, 易红亮, 王国栋, 骆智超, 黄明欣. 原位生成铁基复合材料中TiB2的三维形貌重构[J]. 金属学报, 2019, 55(1): 133-140.
[10] 鲍思前, 刘兵兵, 赵刚, 徐洋, 柯珊珊, 胡晓, 刘磊. Hi-B钢二次再结晶退火中异常长大Goss取向晶粒的三维形貌表征[J]. 金属学报, 2018, 54(6): 877-885.
[11] 康慧君, 李金玲, 王同敏, 郭景杰. 定向凝固Al-Mn-Be合金初生金属间化合物相生长行为及力学性能[J]. 金属学报, 2018, 54(5): 809-823.
[12] 李敏, 刘静, 姜庆伟. 退火温度对ARB-Cu室温拉伸断裂行为的影响[J]. 金属学报, 2017, 53(8): 1001-1010.
[13] 徐洋,鲍思前,赵刚,黄祥斌,黄儒胜,刘兵兵,宋娜娜. Hi-B钢二次再结晶退火初期不同取向晶粒的三维形貌表征[J]. 金属学报, 2017, 53(5): 539-548.
[14] 李飞,张华煜,何文武,陈慧琴,郭会光. Mn18Cr18N奥氏体不锈钢的压缩拉伸连续加载变形行为*[J]. 金属学报, 2016, 52(8): 956-964.
[15] 刘政,徐丽娜,余昭福,陈杨政. 电磁场作用下半固态A356-La铝合金初生相形貌及分形维数的研究*[J]. 金属学报, 2016, 52(6): 698-706.