Please wait a minute...
金属学报  2017, Vol. 53 Issue (6): 733-742    DOI: 10.11900/0412.1961.2016.00509
  本期目录 | 过刊浏览 |
1 上海交通大学材料科学与工程学院 上海 200240
2 上海交通大学材料科学与工程学院上海市激光制造与材料改性重点实验室 上海 200240
Finite Element Simulation and Experimental Verification of Quenching Stress in Fully Through-Hardened Cylinders
Yu LIU1,Shengwei QIN1,Xunwei ZUO1,Nailu CHEN2(),Yonghua RONG1
1 School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
2 Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
全文: PDF(1871 KB)   HTML

利用温度场、组织场和应力场相互耦合的数学模型对直径60 mm的40CrNiMo水淬圆棒的淬火应力进行研究。结果表明,有限元模拟的淬火应力及其分布与XRD测量结果相符,论证了所运用的温度场、组织场和应力场相互耦合的数学模型(包括建立的相变塑性函数)的正确性。通过计算机模拟分离了淬火马氏体钢中的热应力和组织应力,揭示了不同直径淬透圆棒试样的应力分布规律及其起因以及不同淬火介质对淬火应力的影响规律。

关键词 全淬透圆柱件淬火应力热应力组织应力有限元模拟    

Quenching is one of the most important heat-treatment processes for improving the mechanical properties of steel components in manufacture industry. The quenching stress is a source of cracking, which is frequently detrimental to steel properties. Therefore, the investigation of quenching stress is very important for the control of distortion, cracking and residual stress distributions of components. In the study of quenching stress, the measurement of stress distribution is necessary to the stress analysis and design of quenching process. However, in most cases, the cracking of a quenched component is caused by transient stress during quenching, while experiment can only measures the final internal stress (residual stress), rather than transient stress. As a result, the measurement of residual stress associated with finite element simulation (FES) has been a mainstream direction in the investigation of quenching stress. In this work, a full through-hardened 40CrNiMo cylinder with 60 mm diameter was water-quenched, and cooling curves at three positions along the radius of cylinder were measured. Then, an optimized heat transfer coefficient as a function of surface temperature was obtained by fitting with the measured cooling curves using the trial and error method. Based on an exponent-modified (Ex-Modified) normalized function describing transformation plasticity kinetics proposed, the thermo-elasto-plastic constitutive equations were deduced. The commercial finite element software, Abaqus/Standard, was used to solve the coupled temperature field, microstructure field and stress (strain) field. The results indicate that the quenching stress and its distribution predicted by FES is well consistent with those measured by XRD, which verified that the models employed in coupling of thermal field, phase transformation field and stress field including transformation plasticity function proposed are correct. Meanwhile, the features of residual stress distribution were revealed that compressive stress exists in the core and surface of cylinder and the maximum tensile stress exists at subsurface. The separated calculation of thermal stress and phase transformation stress by FES reveals the origin of residual stress distribution feature in quenched cylinders, that is, the relative higher phase transformation compressive stress and lower tensile thermal stress at the core of cylinder make the residual stress to be compressive, while at the surface of cylinder the compressive stress is predominantly from thermal stress, because it is much larger than the tensile stress caused by phase transformation stress. The tangential residual stress distributions in cylinders with several diameters from 3 mm to 100 mm were predicted by FES, and the results indicate that when diameter is less than 5 mm, the tensile stress at the surface increases with increasing diameter until to 5 mm, then decreases with increasing diameter to 20 mm, finally the tensile stress becomes compressive stress. Besides, with the increase of diameter, maximum tensile stress shifts from the surface to the location of 0.6 radius. The effects of different quenching media on quenching stress were also investigated by FES. The results demonstrated that although there is compressive stress at surface of cylinder quenched in water or salt solution, the maximum stress locates the subsurface, meaning that cracking easily occurs at the subsurface, which is consistent with cracking in practical components. This work is helpful for the analysis of cracking from quenching stress in components with different sizes and under different quenching media.

Key wordsfully through-hardened cylinder    quenching stress    thermal stress    phase transformation stress    finite element simulation
收稿日期: 2016-11-14      出版日期: 2017-02-27


刘玉, 秦盛伟, 左训伟, 陈乃录, 戎咏华. 全淬透圆柱件淬火应力的有限元模拟及实验验证[J]. 金属学报, 2017, 53(6): 733-742.
Yu LIU, Shengwei QIN, Xunwei ZUO, Nailu CHEN, Yonghua RONG. Finite Element Simulation and Experimental Verification of Quenching Stress in Fully Through-Hardened Cylinders. Acta Metall, 2017, 53(6): 733-742.

链接本文:      或

图1  淬火过程简化后的耦合关系
图2  试样不同位置的冷却曲线测量与计算结果的比较,及修正后的换热系数与文献[32]数据的比较
图3  奥氏体、贝氏体和马氏体的热膨胀曲线
图4  直径60 mm的40CrNiMo圆柱件水淬后1/2半径处和心部的显微组织OM像
图5  40CrNiMo圆柱件水淬后组织体积分数(计算和测量)和硬度(测量)的截面分布
图6  直径60 mm的40CrNiMo圆棒水淬后轴向及切向应力的截面分布
图7  直径60 mm的40CrNiMo圆棒水淬时心部、表面及距表面10 mm位置处的切向应力变化过程
图8  直径60 mm的40CrNiMo圆棒水淬热应力、组织应力及残余应力计算结果的比较
图9  不同直径全淬透圆棒工件水淬后的切向残余应力、热应力和组织应力分布
图10  直径50 mm的全淬透试样分别在空气、水、80 ℃油和10%NaCl水溶液淬火后的切向残余应力、热应力和组织应力分布
[1] Totten G, Howes M, Inoue T.Handbook of Residual Stress and Deformation of Steel[M]. Materials Park, OH, USA: ASM International, 2002: 249
[2] Kang D T, Zhang H.A study of distributive law of thermal residual stresses in a large high-tempered shaft[J]. Trans. Met. Heat Treat., 1983, 4(2): 61
[2] (康大韬, 张海. 调质大轴中残余应力沿工件截面分布规律的研究[J]. 金属热处理学报, 1983, 4(2): 61)
[3] Kang D T, Nan Y.A study of transformation stresses in cylindrical parts[J]. Trans. Met. Heat Treat., 1985, 6(1): 33
[3] (康大韬, 南云. 柱形件中残余组织应力的研究[J]. 金属热处理学报, 1985, 6(1): 33)
[4] Zhang H.Measurement and research of hardening residual stress of heavy forging[J]. Met. Phys. Exam. Test., 2001, (3): 26
[4] (张海. 大锻件淬火残余应力的测定及研究[J]. 物理测试, 2001, (3): 26)
[5] Wang K F, Chandrasekar S, Yang H T Y. Experimental and computational study of the quenching of carbon steel[J]. J. Manuf. Sci. Eng., 1997, 119: 257
[6] Chen N L, Zuo X W, Xu J, et al.Research and application of digital timed quenching process and equipment[J]. Heat Treat. Met., 2009, 34(3): 37
[6] (陈乃录, 左训伟, 徐骏等. 数字化控时淬火冷却工艺及设备的研究与应用[J]. 金属热处理, 2009, 34(3): 37)
[7] Inoue T, Nagaki S, Kishino T, et al.Description of transformation kinetics, heat conduction and elastic-plastic stress in the course of quenching and tempering of some steels[J]. Ing. Arch., 1981, 50: 315
[8] Denis S, Sj?str?m S, Simon A.Coupled temperature, stress, phase transformation calculation model numerical illustration of the internal stresses evolution during cooling of a eutectoid carbon steel cylinder[J]. Metall. Trans., 1987, 18A: 1203
[9] Rohde J, Jeppsson A.Literature review of heat treatment simulations with respect to phase transformation, residual stresses and distortion[J]. Scand. J. Metall., 2000, 29: 47
[10] ?im?ir C, Gür C H.3D FEM simulation of steel quenching and investigation of the effect of asymmetric geometry on residual stress distribution[J]. J. Mater. Process. Technol., 2008, 207: 211
[11] Arimoto K, Lambert D, Lee K, et al.Prediction of quench cracking by computer simulation [A]. Proceedings of the 19th ASM Heat Treating Society Conference on Including Steel Heat Treating in the New Millennium[C]. Cincinnati: ASM International, 1999: 435
[12] Jung M, Kang M, Lee Y K.Finite-element simulation of quenching incorporating improved transformation kinetics in a plain medium-carbon steel[J]. Acta Mater., 2012, 60: 525
[13] Lee S J, Lee Y K.Finite element simulation of quench distortion in a low-alloy steel incorporating transformation kinetics[J]. Acta Mater., 2008, 56: 1482
[14] Ariza E A, Martorano M A, de Lima N B, et al. Numerical simulation with thorough experimental validation to predict the build-up of residual stresses during quenching of carbon and low-alloy steels[J]. ISIJ Int., 2014, 54: 1396
[15] Yao X, Zhu L H, Li M V.A fully coupled material constitutive model for steel quench analysis[J]. Int. J. Microstruct. Mater. Prop., 2010, 5: 501
[16] Yamanaka S, Sakanoue T, Yoshii T, et al. Transformation plasticity-the effect on metallo-thermo-mechanical simulation of carburized quenching process [J]. J. Shanghai Jiaotong Univ., 2000, E-5(1): 185
[17] Denis S.Considering stress-phase transformation interactions in the calculation of heat treatment residual stresses[J]. J. Phys. IV, 1996, 6(C1): 159
[18] Taleb L, Cavallo N, Waeckel F.Experimental analysis of transformation plasticity[J]. Int. J. Plast., 2001, 17: 1
[19] Liu Y, Qin S W, Hao Q G, et al.Finite element simulation and experimental verification of internal stress of quenched AISI 4140 cylinders[J]. Metall. Mater. Trans., 2017, 48A: 1402
[20] Ferguson B L, Li Z, Freborg A M.Modeling heat treatment of steel parts[J]. Comp. Mater. Sci., 2005, 34: 274
[21] Ju D Y, Mukai R, Sakamaki T.Development and application of computer simulation code COSMAP on induction heat treatment process[J]. Int. Heat Treat. Surf. Eng., 2011, 5: 65
[22] Fischer F D, Sun Q P, Tanaka K.Transformation-induced plasticity (TRIP)[J]. Appl. Mech. Rev., 1996, 49: 317
[23] Fischer F D, Reisner G, Werner E, et al.A new view on transformation induced plasticity (TRIP)[J]. Int. J. Plast., 2000, 16: 723
[24] Xu Z Y.Effect of stress on bainitic transformation in steel[J]. Acta Metall. Sin., 2004, 40: 113
[24] (徐祖耀. 应力对钢中贝氏体相变的影响[J]. 金属学报, 2004, 40: 113)
[25] Sun S Y, Dai Y K.Analytic Atlas of Heat Treatment Cracking [M]. Dalian: Dalian Publishing House, 2002: 20
[25] (孙盛玉, 戴雅康. 热处理裂纹分析图谱 [M]. 大连: 大连出版社, 2002: 20)
[26] Isomura R, Sat? H.On quench-cracking phenomena as viewed from the aspect of quenching stresses[J]. J. Jpn. Inst. Met., 1961, 25: 360
[27] European Standard.DS/EN15305 Non-destructive testing-test method for residual stress analysis by X-ray diffraction[S]. 2008
[28] Yuan F R, Wu S L.Measurement and Calculation of Residual Stress [M]. Changsha: Hunan University Press, 1987: 212
[28] (袁发荣, 伍尚礼. 残余应力测试与计算 [M]. 长沙: 湖南大学出版社, 1987: 212)
[29] Leblond J B, Mottet G, Devaux J, et al.Mathematical models of anisothermal phase transformations in steels, and predicted plastic behaviour[J]. Mater. Sci. Technol., 1985, 1: 815
[30] Bejan A, Kraus A D.Heat Transfer Handbook[M]. New Jersey: John Wiley & Sons, Inc., 2003: 165
[31] Janzen I P.Modeling of heat treating processes for transmission gears [D]. Worcester: Worcester Polytechnic Institute, 2009
[32] Arimoto K, Li G, Arvind A, et al.The modeling of heat treating process [A]. Proceedings of the 18th Heat Treating Conference[C]. Rosemont: ASM International, 1998: 23
[33] Koistinen D P, Marburger R E.A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels[J]. Acta Metall., 1959, 7: 59
[34] Sourmail T, Garcia-Mateo C.Critical assessment of models for predicting the Ms temperature of steels[J]. Comp. Mater. Sci., 2005, 34: 323
[35] van Bohemen S M C, Sietsma J. Effect of composition on kinetics of athermal martensite formation in plain carbon steels[J]. Mater. Sci. Technol., 2009, 25: 1009
[36] Fanfoni M, Tomellini M.The Johnson-Mehl- Avrami-Kohnogorov model: a brief review[J]. Nouv. Cim., 1998, 20D: 1171
[37] Scheil E.Anlaufzeit der Austenitumwandlung[J]. Arch. Eisenhuttenwes., 1935, 12: 565
[38] Cheng H M, Fan J, Wang H G.Estimation of the mechanical properties of a 42CrMo steel cylinder with phase transformation during quenching[J]. J. Mater. Process. Technol., 1997, 63: 568
[39] Nagasaka Y, Brimacombe J K, Hawbolt E B, et al.Mathematical model of phase transformations and elastoplastic stress in the water spray quenching of steel bars[J]. Metall. Trans., 1993, 24A: 795
[40] Liu C C, Yao K F, Xu X J, et al.Models for transformation plasticity in loaded steels subjected to bainitic and martensitic transformation[J]. Mater. Sci. Technol., 2001, 17: 983
[41] Yu H S.Plasticity and Geotechnics[M]. US: Springer, 2006: 23
[42] Leblond J B, Mottet G, Devaux J C.A theoretical and numerical approach to the plastic behaviour of steels during phase transformations-II. Study of classical plasticity for ideal-plastic phases[J]. J. Mech. Phys. Solids, 1986, 34: 411
[43] Arimoto K, Yamanaka S, Narazaki M, et al.Explanation of the origin of quench distortion and residual stress in specimens using computer simulation[J]. Int. J. Microstruct. Mater. Prop., 2009, 4: 168
[44] Lambert D, Wu W T, Arimoto K, et al.Finite element analysis of internal stresses in quenched steel cylinders [A]. Proceedings of the 19th ASM Heat Treating Society Conference on Including Steel Heat Treating in the New Millennium[C]. Cincinnati: ASM International, 1999: 425
[45] Yonetani S, translated by Zhu J P, Shao H M. Generation and Tackle of Residual Stress [M]. Beijing: China Machine Press, 1983: 127
[45] (米谷茂著, 朱荆璞, 邵会孟译. 残余应力的产生和对策 [M]. 北京: 机械工业出版社, 1983: 127)
[1] 李永奎, 权纯逸, 陆善平, 焦清洋, 李世键, 孙忠海. TA15钛合金薄壁焊接件热处理校形研究*[J]. 金属学报, 2016, 52(3): 281-288.
[2] 邓云华,关桥,陶军,吴冰,王西昌. 电子束功率对TC4合金刚性拘束热自压连接、接头组织和力学性能的影响[J]. 金属学报, 2015, 51(9): 1111-1120.
[3] 冯瑞, 张美汉, 陈乃录, 左训伟, 戎咏华. 应力松弛对应变诱发马氏体相变影响的有限元模拟*[J]. 金属学报, 2014, 50(4): 498-506.
[4] 李永奎, 陈俊丹, 陆善平. 42CrMo钢车轮锻件在淬火过程中的残余应力研究*[J]. 金属学报, 2014, 50(1): 121-128.
[5] 赵 冰 李志强 韩秀全 廖金华 侯红亮 白秉哲. 基于刚黏塑性本构关系的钛合金空心整体结构成形过程三维有限元分析[J]. 金属学报, 2010, 46(4): 396-403.
[6] 吴波 魏悦广 谭建松 王建平. 纳米晶Ni晶间断裂的数值模拟[J]. 金属学报, 2009, 45(9): 1077-1082.
[7] 石艳柯 张克实 胡桂娟. 多晶Cu在双向加载下的后继屈服与塑性流动分析[J]. 金属学报, 2009, 45(11): 1370-1377.
[8] 张国栋; 刘俊成; 李蛟 . 坩埚内壁碳膜对Bridgman法生长CdZnTe晶体热应力的影响[J]. 金属学报, 2007, 43(10): 1071-1076 .
[9] 高士友; 石力开; 席明哲; 纪宏志; 张永忠; 杜宝亮 . 金属直薄壁件激光直接沉积过程的有限元模拟 II. 沉积过程中热应力场的模拟[J]. 金属学报, 2006, 42(5): 454-458 .
[10] 潘涛; 杨志刚; 白秉哲; 方鸿生 . 钢中夹杂物与奥氏体基体热膨胀系数差异导致的热应力和应变能研究[J]. 金属学报, 2003, 39(10): 1037-1042 .
[11] 雷明凯; 罗鹏 . 钢渗硼表面残余应力的数值分析[J]. 金属学报, 2002, 38(1): 47-52 .
[12] 兰勇军; 陈祥永; 黄成江; 李殿中; 李依依 . 带钢热轧过程中温度演变的数值模拟和实验研究[J]. 金属学报, 2001, 37(1): 99-103 .
[13] 陈慧琴; 刘建生 . Mn18Cr18N钢热成形晶粒变化的模拟研究[J]. 金属学报, 1999, 35(1): 53-56 .
[14] 郑贤淑;金俊泽. 电磁铸造大板坯凝固过程中热裂纹萌生机理分析[J]. 金属学报, 1995, 31(23): 511-517.