Please wait a minute...
金属学报  2016, Vol. 52 Issue (3): 320-330    DOI: 10.11900/0412.1961.2015.00327
  论文 本期目录 | 过刊浏览 |
管线钢在沉积物下的腐蚀行为及有机膦缓蚀剂的作用效果*
徐云泽1,黄一1,盈亮2,杨飞1,李兵1,王晓娜3()
1 大连理工大学船舶工程学院, 大连 116024
2 大连理工大学材料科学与工程学院, 大连 116024
3 大连理工大学物理与光电学院, 大连 116024
CORROSION BEHAVIOR OF PIPELINE STEEL UNDER DEPOSIT CORROSION AND THE INHIBITION PERFORMANCE OF ORGANIC PHOSPHINE INHIBITOR
Yunze XU1,Yi HUANG1,Liang YING2,Fei YANG1,Bing LI1,Xiaona WANG3()
1 School of Naval Architecture Engineering, Dalian University of Technology, Dalian 116024, China
2 School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
3 School of Physics and Optoelectronic Engineering, Dalian University of Technology, Dalian 116024, China
引用本文:

徐云泽, 黄一, 盈亮, 杨飞, 李兵, 王晓娜. 管线钢在沉积物下的腐蚀行为及有机膦缓蚀剂的作用效果*[J]. 金属学报, 2016, 52(3): 320-330.
Yunze XU, Yi HUANG, Liang YING, Fei YANG, Bing LI, Xiaona WANG. CORROSION BEHAVIOR OF PIPELINE STEEL UNDER DEPOSIT CORROSION AND THE INHIBITION PERFORMANCE OF ORGANIC PHOSPHINE INHIBITOR[J]. Acta Metall Sin, 2016, 52(3): 320-330.

全文: PDF(5286 KB)   HTML
摘要: 

利用动电位扫描(PDS), 电化学阻抗谱(EIS)和线性极化电阻法(LPR), 研究了石英砂沉积物覆盖下的X65管线钢在含氧盐溶液中的腐蚀行为及有机膦缓蚀剂乙二胺四亚甲基膦酸钠(EDTMPS)的作用效果. 通过丝束电极(WBE)对沉积物所导致的电偶效应进行了测试. 结果表明, 沉积物覆盖下的X65钢平均腐蚀速率变缓, 但伴随有局部腐蚀发生. 在溶液中加注35 mg/L的EDTMPS后, 裸露的X65钢电极的腐蚀速率在3 h内由0.17 mm/a降低并稳定在0.082 mm/a, 沉积物覆盖下的X65钢电极在6 h内腐蚀速率由0.051 mm/a降低到0.026 mm/a并保持稳定, EDTMPS对裸钢和沉积物覆盖下的碳钢均有良好的缓蚀效果. WBE电偶效应测试结果表明, 沉积物覆盖区域电位较低, 表现为阳极区并伴随有严重的局部腐蚀发生. 在注入35 mg/L缓蚀剂后, WBE平均电位迅速下降, 阳极区域逐渐减小, 在加入EDTMPS缓蚀剂24 h后, 最大阳极电流密度和阳极总电流分别从0.21 mA/cm2和0.056 mA降低至0.078 mA/cm2和0.021 mA. 监测数据表明, EDTMPS对沉积物覆盖所引起的电偶效应也有一定的抑制作用.

关键词 管线钢沉积物腐蚀EDTMPS电偶效应丝束电极    
Abstract

Localized corrosion such as pitting and mesa attack caused by the presence of solid deposits on a metal surface is defined as under deposit corrosion (UDC). UDC is frequently observed in oil and gas transition pipelines where sand, debris biofilm and carbonate deposit are present. Studies have found that the introduction of oxygen would accelerate the galvanic corrosion behavior between the deposit covered area and the area without deposit. Some experiments have been carried out and demonstrated that high concentration inhibitor should be used for the migration of UDC. However, the inhibition effect of the organic phosphonic inhibitor for UDC is rare in the previous studies. In this work, the evaluation of UDC behavior of X65 pipeline steel and the performance of corrosion inhibitor Ethylene Diamine Tetra (Methylene Phosphonic Acid) Sodium (EDTMPS) in the oxygen contained solutions are studied by using polarization dynamic scan (PDS), electrochemical impedance spectra (EIS) and linear polarization resistance (LPR) methods. The galvanic effect caused by the deposit is studied by using wire beam electrode (WBE). The measurement results show that the corrosion rate of deposit-covered electrode is lower than that of bare electrode, but localized corrosion is observed on the deposit-covered steel surface. After 35 mg/L EDTMPS is introduced into the solution, the corrosion rate of the bare steel decreased from 0.17 mm/a to 0.082 mm/a and the corrosion rate of the deposit covered electrode decreased from 0.051 mm/a to 0.026 mm/a. Protective films are observed on both deposit covered steel surface and bare steel surface after EDTMPS added. In the galvanic corrosion monitoring experiment by using WBE, the under deposit area has a lower potential and performs as the anodic area with serious localized corrosion. After 35 mg/L EDTMPS is injected, the average potential begins to decrease. The maximum anodic current density and the total anodic current respectively decrease from 0.21 mA/cm2 and 0.056 mA to 0.078 mA/cm2 and 0.021 mA. The electrochemical measurement results reveal that EDTMPS has an excellent inhibition effect for the corrosion of both bare electrode and deposit covered electrode. The WBE test illustrates that EDTMPS also has an inhibition effect on the galvanic corrosion caused by the covering deposit. However, EDTMPS cannot completely prevent the localized corrosion behavior on WBE surface.

Key wordspipeline steel    under deposit corrosion    EDTMPS    galvanic effect    wire beam electrode
收稿日期: 2015-06-23     
基金资助:*十二五国家科技支撑计划项目2011ZX05056, 中国博士后科学基金项目2014M561223和中央高校基本科研业务费专项资金项目DUT15YQ36资助
图1  乙二胺四亚甲基膦酸钠(EDTMPS)结构式
图2  SiO2沉积物施加方法示意图
图3  丝束电极(WBE)实物照片,沉积物覆盖下的WBE示意图与WBE测量原理图
图4  X65钢和SiO2沉积物颗粒的OM像
图5  有无沉积物覆盖的X65钢在EDTMPS加注前后的极化曲线
Electrode ba bc Ecorr
V
icorr
Acm-2
vcorr
mma-1
B
Bare electrode without EDTMPS 89 320 -0.706 1.32×10-5 0.158 30
Bare electrode with EDTMPS 126 174 -0.749 6.78×10-6 0.081 31
Under-deposit electrode without EDTMPS 97 85 -0.743 4.11×10-6 0.049 20
Under-deposit electrode with EDTMPS 262 98 -0.776 2.96×10-6 0.035 31
表1  各X65钢电极的极化曲线电化学参数拟合结果
Electrode Rsol
Ωcm2
Rt
Ωcm2
n CPE
μΩ-1cm-2sn
Bare electrode without EDTMPS 8.13 1219 0.71 942
Bare electrode with EDTMPS 7.56 2692 0.75 392
Under-deposit electrode without EDTMPS 29.72 4473 0.75 370
Under-deposit electrode with EDTMPS 28.60 8882 0.84 295
表2  电化学阻抗谱等效电路各元件拟合参数
图6  有无沉积物覆盖的X65钢在EDTMPS加注前后的电化学阻抗谱(EIS)
图7  等效电路示意图
图8  基于线性极化法的腐蚀速率测量结果
图9  有无沉积物覆盖的X65钢在EDTMPS加注前后的表面宏观腐蚀形貌
图10  有无沉积物覆盖的X65钢在EDTMPS加注前后的微观腐蚀形貌的SEM像
图11  X65 钢WBE在无缓蚀剂加注溶液中腐蚀5 h 后的自腐蚀电位和电偶电流分布云图
图12  X65 钢WBE在缓蚀剂EDTMPS分别加注5和24 h 后的自腐蚀电位和电偶电流分布云图
图13  EDTMPS缓蚀剂作用24 h 后WBE实物照片
[1] Zhang X Y, Di C, Chen Z Y, Wang F P, Du Y L.Corros Sci Prot Technol, 1999; 11: 279
[1] (张学元, 邸超, 陈卓元, 王凤平, 杜元龙. 腐蚀科学与防护技术, 1999; 11: 279)
[2] de Reus J A M, Hendriksen E L J A, Wilms M E, Al-Habsi Y N, Durnie W H, Gough M A. Corrosion 2005, Houston: NACE, 2005: 05288
[3] Xu Y Z, Huang Y, Wang X N, Lin X Q.Sens Actuators, 2016; 224B: 37
[4] Sun C, Sun J B, Wang Y, Wang S J, Liu J X.Acta Metall Sin, 2014; 50: 811
[4] (孙冲, 孙建波, 王勇, 王世杰, 刘建新. 金属学报, 2014; 50: 811)
[5] Gao Q Y, Zhang J J, Yang Z G, Yang D M, Liu J N, Zang H Y, Zhu Y Y, Zhang T.Sci Technol Rev, 2014; 32(24): 35
[5] (高秋英, 张江江, 杨祖国, 羊东明, 刘冀宁, 臧晗宇, 朱原原, 张涛. 科技导报, 2014; 32(24): 35)
[6] Jeannin M, Calonnec D, Sabot R, Refait P.Corros Sci, 2010; 52: 2026
[7] Tan Y, Fwu Y, Bhardwaj K.Corros Sci, 2011; 53: 1254
[8] Pandarinathan V, Lepková K, Bailey S I, Gubner R.Corros Sci, 2013; 72: 108
[9] Pandarinathan V, Lepková K, Bailey S I, Gubner R. J Electrochem Soc, 2013; 160: C432
[10] Cheng H P, Wang D J.Corros Prot Petrochem Ind, 2014; 31(1): 46
[10] (程海鹏, 王东江. 石油化工腐蚀与防护, 2014; 31(1): 46)
[11] Jia H L, Zhao C P, Wang H, Jiang S, Fei X S.Pipe Tech Equip, 2013; (3): 51
[11] (贾恒磊, 赵春平, 汪浩, 姜姝, 费雪松. 管道技术与设备, 2013; (3): 51)
[12] Machuca L L, Murray L, Gubner R, Bailey S I.Mater Corros, 2014; 65: 8
[13] Sawford M K, Ateya B G, Abdullah A M, Pickering H W.J Electrochem Soc, 2002; 149: B198
[14] Ya-Chiao C, Woollam R, Orazem M E.J Electrochem Soc, 2014; 161: C321
[15] Pandarinathan V, Lepková K, Bailey S I, Gubner R.Corrosion 2011, Houston: NACE, 2011: 11261
[16] Zhang G A, Yu N, Yang L Y, Guo X P.Corros Sci, 2014; 86: 202
[17] Pedersen A, Bilkova K, Gulbrandsen E, Kvarekval J.Corrosion 2008, Houston: NACE, 2008: 08632
[18] Huang Y, Xu Y, Li B, Ying L, Yang F, Wang X.Corros Eng Sci Technol, DOI: 10.1179/1743278215Y.0000000047
[19] Dong Z H, Shi W, Guo X P.Acta Phys-Chim Sin, 2011; 27: 127
[19] (董泽华, 石维, 郭兴蓬. 物理化学学报, 2011; 27: 127)
[20] Aung N N, Tan Y J.Corros Sci, 2004; 46: 3057
[21] Tan Y J, Aung N N.Mater Corros, 2014; 65: 457
[22] Varela F, Tan M Y, Forsyth M.Corros Eng Sci Technol, 2015; 50: 226
[23] Belayachi M, Serrar H, Zarrok H, El Assyry A, Zarrouk A, Oudda
[23] H, Boukhris S, Hammouti B, Ebenso E E, Geunbour A.Int J Electrochem Sci, 2015; 10: 3010
[24] Zhang B R, Zhang L, Li F T, Hu W, Hannam P M.Corros Sci, 2010; 52: 3883
[25] Liu L S.Shanxi Chem Ind, 2009; 29(3): 38
[25] (刘丽莎. 山西化工, 2009; 29(3): 38)
[26] Zou Y, Wang J, Zheng Y Y.Corros Sci, 2011; 53: 208
[27] Orlikowski J, Darowicki K, Mikołajski S.Sens Actuators, 2013; 181B: 22
[28] Jiang S H, Xu J W.Shandong Chem Ind, 2013; 42(12): 9
[28] (蒋守红, 徐杰武. 山东化工, 2013; 42(12): 9)
[29] Cao C N.Principles of Electrochemistry of Corrosion. 3rd Ed., Beijing: Chemical Industry Press, 2008: 175
[29] (曹楚南. 腐蚀电化学原理. 第三版, 北京: 化学工业出版社, 2008: 175)
[30] Stern M, Geary A L.J Electrochem Soc, 1957; 104: 56
[31] Peng X, Wang J, Shan C, Wang H J, Liu Z J, Zou Y.Acta Metall Sin, 2012; 48: 1260
[31] (彭欣, 王佳, 山川, 王海杰, 刘在健, 邹妍. 金属学报, 2012; 48: 1260)
[32] Tan Y J.Corros Sci, 2011; 53: 1145
[1] 李小涵, 曹公望, 郭明晓, 彭云超, 马凯军, 王振尧. 低碳钢Q235、管线钢L415和压力容器钢16MnNi在湛江高湿高辐照海洋工业大气环境下的初期腐蚀行为[J]. 金属学报, 2023, 59(7): 884-892.
[2] 张月鑫, 王举金, 杨文, 张立峰. 冷却速率对管线钢中非金属夹杂物成分演变的影响[J]. 金属学报, 2023, 59(12): 1603-1612.
[3] 李学达, 李春雨, 曹宁, 林学强, 孙建波. 高强管线钢焊接临界再热粗晶区中逆转奥氏体的逆相变晶体学[J]. 金属学报, 2021, 57(8): 967-976.
[4] 杨柯,史显波,严伟,曾云鹏,单以银,任毅. 新型含Cu管线钢——提高管线耐微生物腐蚀性能的新途径[J]. 金属学报, 2020, 56(4): 385-399.
[5] 陈芳,李亚东,杨剑,唐晓,李焰. X80钢焊接接头在模拟天然气凝析液中的腐蚀行为[J]. 金属学报, 2020, 56(2): 137-147.
[6] 李亚东,李强,唐晓,李焰. X80管线钢焊接接头的模拟重构及电偶腐蚀行为表征[J]. 金属学报, 2019, 55(6): 801-810.
[7] 张体明, 赵卫民, 蒋伟, 王永霖, 杨敏. X80钢焊接残余应力耦合接头组织不均匀下氢扩散的数值模拟[J]. 金属学报, 2019, 55(2): 258-266.
[8] 马歌, 左秀荣, 洪良, 姬颖伦, 董俊媛, 王慧慧. 深海用X70管线钢焊接接头腐蚀行为研究[J]. 金属学报, 2018, 54(4): 527-536.
[9] 舒韵, 闫茂成, 魏英华, 刘福春, 韩恩厚, 柯伟. X80管线钢表面SRB生物膜特征及腐蚀行为[J]. 金属学报, 2018, 54(10): 1408-1416.
[10] 史显波, 严伟, 王威, 单以银, 杨柯. 新型含Cu管线钢的抗氢致开裂性能[J]. 金属学报, 2018, 54(10): 1343-1349.
[11] 董利明,杨莉,戴军,张宇,王学林,尚成嘉. Mn、Ni、Mo含量对K65热煨弯管焊缝组织转变和低温韧性的影响[J]. 金属学报, 2017, 53(6): 657-668.
[12] 万红霞,宋东东,刘智勇,杜翠薇,李晓刚. 交流电对X80钢在近中性环境中腐蚀行为的影响[J]. 金属学报, 2017, 53(5): 575-582.
[13] 史显波,徐大可,闫茂成,严伟,单以银,杨柯. 新型含Cu管线钢的微生物腐蚀行为研究[J]. 金属学报, 2017, 53(2): 153-162.
[14] 赵小宇, 黄峰, 甘丽君, 胡骞, 刘静. MS X70酸性环境用管线钢焊接接头氢致开裂敏感性及氢捕获效率研究[J]. 金属学报, 2017, 53(12): 1579-1587.
[15] 于利宝, 闫茂成, 马健, 吴明浩, 舒韵, 孙成, 许进, 于长坤, 卿永长. 富Fe红壤中管线钢的硫酸盐还原菌腐蚀行为[J]. 金属学报, 2017, 53(12): 1568-1578.