Please wait a minute...
金属学报  2015, Vol. 51 Issue (12): 1545-1552    DOI: 10.11900/0412.1961.2015.00254
  本期目录 | 过刊浏览 |
Zr-0.72Sn-0.32Fe-0.14Cr-xNb合金在500 ℃过热蒸汽中的耐腐蚀性能*
王波阳1,周邦新1,2(),王桢1,黄娇1,姚美意1,2,周军3
1 上海大学材料研究所, 上海 200072
2 上海大学微结构重点实验室, 上海 200444
3 西部新锆核材料科技有限公司, 西安 710016
CORROSION RESISTANCE OF Zr-0.72Sn-0.32Fe- 0.14Cr-xNb ALLOYS IN 500 ℃ SUPERHEATED STEAM
Boyang WANG1,Bangxin ZHOU1,2(),Zhen WANG1,Jiao HUANG1,Meiyi YAO1,2,Jun ZHOU3
1 Institute of Materials, Shanghai University, Shanghai 200072
2 Laboratory for Microstructures, Shanghai University, Shanghai 200444
3 Western Energy Material Technologies Co. Ltd., Xi'an 710016
引用本文:

王波阳,周邦新,王桢,黄娇,姚美意,周军. Zr-0.72Sn-0.32Fe-0.14Cr-xNb合金在500 ℃过热蒸汽中的耐腐蚀性能*[J]. 金属学报, 2015, 51(12): 1545-1552.
Boyang WANG, Bangxin ZHOU, Zhen WANG, Jiao HUANG, Meiyi YAO, Jun ZHOU. CORROSION RESISTANCE OF Zr-0.72Sn-0.32Fe- 0.14Cr-xNb ALLOYS IN 500 ℃ SUPERHEATED STEAM[J]. Acta Metall Sin, 2015, 51(12): 1545-1552.

全文: PDF(902 KB)   HTML
摘要: 

选用织构相同的Zr-0.72Sn-0.32Fe-0.14Cr-xNb (x=0, 0.12, 0.28, 0.48, 0.97, 质量分数, %)合金片状样品, 利用高压釜在500 ℃, 10.3 MPa过热蒸汽中进行500 h的腐蚀实验, 用TEM和SEM分别观察了合金的显微组织和氧化膜断口形貌, 研究了Nb含量对锆合金耐腐蚀性能的影响. 结果表明, 5种合金样品都未出现疖状腐蚀, 并且各自的轧面(SN面)、垂直于轧向的截面(SR面)和垂直于横向的截面(ST面)上氧化膜的厚度没有明显差异, 没有腐蚀各向异性的特征. 当Nb含量超过0.28%后, 腐蚀250 h后合金的腐蚀速率随着Nb含量的增加而增加, 合金的耐腐蚀性能变差. Nb的添加会对合金中第二相的晶体结构产生影响, 低Nb的合金中主要含fcc结构的Zr(Fe, Cr)2或Zr(Fe, Cr, Nb)2型第二相, 而高Nb的合金中主要含hcp结构的Zr(Fe, Cr, Nb)2型第二相.

关键词 锆合金Nb第二相耐腐蚀性能    
Abstract

Zirconium alloys with low alloying content are mainly used in the nuclear industry as structural materials because of their superior properties in terms of thermal neutron transparency, mechanical strength and corrosion resistance. They are used for fuel cladding tubes and channels. The reaction between zirconium and water at high temperature forms oxide film on the surfaces. In order to further improve the corrosion resistance of Zr-based cladding tubes, research has continued on developing new zirconium alloys. The corrosion resistance of Zr-0.72Sn-0.32Fe-0.14Cr-xNb alloys (x=0, 0.12, 0.28, 0.48, 0.97, mass fraction, %) was investigated in a superheated steam at 500 ℃ and 10.3 MPa by autoclave tests. All the plate specimens of zirconium alloys with thickness of 2.8 mm have a similar texture. The microstructure of alloys and oxide films on the corroded specimens were observed by TEM and SEM. The results showed that no nodular corrosion appeared on these alloys for 500 h exposure. The thickness of oxide layers developed on the rolling surface (SN), the surface perpendicular to the rolling direction (SR) and the surface perpendicular to the transversal direction (ST) after 500 h exposure was close to each other. There was no anisotropic corrosion resistance for these alloys. The corrosion rate of the alloys increased with the increase of Nb content after 250 h exposure when the Nb content exceeded 0.28%. In the alloy with low Nb content, the fcc-Zr(Fe, Cr)2 or fcc-Zr(Fe, Cr, Nb)2 precipitate was mainly formed, while the hcp-Zr(Fe, Cr, Nb)2 precipitate was frequently observed in the alloy with high Nb content. The corrosion resistance of Zr-0.72Sn-0.32Fe-0.14Cr-xNb alloys was improved by decreasing the Nb/Fe ratio. From a point of view for the improving corrosion resistance, the addition of Nb no more than 0.3% is recommended.

Key wordszirconium alloy    Nb    second phase    corrosion resistance
    
基金资助:*国家自然科学基金资助项目51471102
图1  0.97Nb合金经580 ℃退火5 h后的(0001)极图和其轧面法向(ND)、 横向(TD)及轧向(RD)的反极图
Specimen fN fR fT
0Nb 0.765 0.059 0.176
0.12Nb 0.658 0.078 0.264
0.28Nb 0.703 0.083 0.213
0.48Nb 0.727 0.053 0.220
0.97Nb 0.701 0.061 0.238
表1  Zr-0.72Sn-0.32Fe-0.14Cr-xNb合金沿ND, RD和TD的织构因子fN, fR和fT
图2  Zr-0.72Sn-0.32Fe-0.14Cr-xNb合金的TEM像
图3  Zr-0.72Sn-0.32Fe-0.14Cr-xNb合金中第二相形貌及SAED谱
图4  Zr-0.72Sn-0.32Fe-0.14Cr-xNb合金在500 ℃, 10.3 MPa过热蒸汽中腐蚀后的增重曲线
图5  Zr-0.72Sn-0.32Fe-0.14Cr-xNb合金腐蚀250~500 h时平均腐蚀速率随Nb含量的变化
图6  Zr-0.72Sn-0.32Fe-0.14Cr-xNb在500 ℃, 10.3 MPa过热蒸汽中腐蚀500 h后SN面(轧面)上氧化膜的断口形貌
图7  Zr-0.72Sn-0.32Fe-0.14Cr-xNb合金在500 ℃, 10.3 MPa过热蒸汽腐蚀时轧面(SN面)、垂直于轧向的截面(SR面)和垂直于横向的截面(ST面)上氧化膜厚度随腐蚀时间的变化
[1] Zhao W J, Zhou B X, Miao Z, Peng Q, Jiang Y R, Jiang H M, Pang H. Atom Energy Sci Technol, 2005; 39(suppl): 1
[1] (赵文金, 周邦新, 苗 志, 彭 倩, 蒋有荣, 蒋宏曼, 庞 华. 原子能科学技术, 2005; 39(增刊): 1)
[2] Cox B. J Nucl Mater, 2005; 336: 331
[3] Sabol G P. In: Rudling P, Kammenzind B eds., Zirconium in the Nuclear Industry: Fourteenth International Symposium, ASTM STP 1467, Stockholm: ASTM, 2004: 3
[4] Sabol G P, Comstock R J, Weiner R A. In: Garde A M, Bradley E R eds., Zirconium in the Nuclear Industry: Tenth International Symposium, ASTM STP 1245, Baltimore, MD: ASTM, 1994: 724
[5] Nikulina A V, Markelov V A, Peregud M M. In: Bradley E R, Sabol G P eds., Zirconium in the Nuclear Industry: Eleventh International Symposium, ASTM STP 1295, Garmisch-Partenkirchen, Germany: ASTM, 1996: 785
[6] Zhao W J. Rare Met Lett, 2004; 23(5): 15
[6] (赵文金. 稀有金属快报, 2004; 23(5): 15)
[7] Zhou B X. J Met Heat Treat, 1997; 18(3): 8
[7] (周邦新. 金属热处理学报, 1997; 18(3): 8)
[8] Liu W Q, Zhu X Y, Wang X J, Li Q, Yao M Y, Zhou B X. Atom Energy Sci Technol, 2010; 44: 1477
[8] (刘文庆, 朱晓勇, 王晓姣, 李 强, 姚美意, 周邦新. 原子能科学技术, 2010; 44: 1477)
[9] Yao M Y, Zhou B X, Li Q, Xia S, Liu W Q. Shanghai Met, 2008; 30(6): 1
[9] (姚美意, 周邦新,李 强, 夏 爽, 刘文庆. 上海金属, 2008; 30(6): 1)
[10] Zhao W J, Miao Z, Jiang H M, Yu X W, Li W J, Li C, Zhou B X. J Chin Soc Corros Prot, 2002; 22: 124
[10] (赵文金, 苗 志, 蒋宏曼, 于晓卫, 李卫军, 李 聪, 周邦新. 中国腐蚀与防护学报, 2002; 22: 124)
[11] Zhou B X, Peng J C, Yao M Y, Li Q, Xia S, Du C X, Xu G. In: Limb?ck M, Barbéris P eds., Zirconium in the Nuclear Industry: Sixteenth International Symposium, ASTM STP 1529, Bridgeport: ASTM, 2011: 620
[12] Sun G C, Zhou B X, Yao M Y, Xie S J, Li Q. Acta Metall Sin, 2012; 48: 1103
[12] (孙国成, 周邦新, 姚美意, 谢世敬, 李 强. 金属学报, 2012; 48: 1103)
[13] Yao M Y, Li S L, Zhang X, Peng J C, Zhou B X, Zhao X S, Shen J Y. Acta Metall Sin, 2011; 47: 865
[13] (姚美意, 李士炉, 张 欣, 彭剑超, 周邦新, 赵旭山, 沈剑韵. 金属学报, 2011; 47: 865)
[14] Toffolon C, Brachet J C, Servant C, Legras L, Charquet D, Barberis P, Mardon J P. In: Moan G D, Rudling P eds., Zirconium in the Nuclear Industry: Thirteenth International Symposium, ASTM STP 1423, West Conshohochen: ASTM, 2002: 361
[15] Takeda K, Anada H. In: Sabol G P, Moan G D eds., Zirconium in the Nuclear Industry: Twelfth International Symposium, ASTM STP 1354, West Conshohochen: ASTM, 2000: 592
[16] Broy Y, Garzarolli F, Seibold A, van Swam L F. In: Sabol G P, Moan G D eds., Zirconium in the Nuclear Industry: Twelfth International Symposium, ASTM STP 1354, West Conshohochen: ASTM, 2000: 609
[17] Zhou B X, Li Q, Yao M Y, Liu W Q, Chu Y L. J ASTM Int, 2008; 5: 360
[18] Zhou B X, Li Q, Yao M Y, Liu W Q. Nucl Power Eng, 2005; 26: 364
[18] (周邦新, 李 强, 姚美意, 刘文庆. 核动力工程, 2005; 26: 364)
[19] Zhou B X, Li Q, Huang Q, Miao Z, Zhao W J, Li C. Nucl Power Eng, 2000; 21: 339
[19] (周邦新, 李 强, 黄 强, 苗 志, 赵文金, 李 聪. 核动力工程, 2000; 21: 339)
[20] Liu W Q, Li Q, Zhou B X, Yan Q S, Yao M Y. Nucl Power Eng, 2005; 26: 249
[20] (刘文庆, 李 强, 周邦新, 严青松, 姚美意. 核动力工程, 2005; 26: 249)
[21] Zhou B X, Li Q, Liu W Q, Yao M Y, Chu Y L. Rare Met Mater Eng, 2006; 35: 1009
[21] (周邦新, 李 强, 刘文庆, 姚美意, 褚于良. 稀有金属材料与工程, 2006; 35: 1009)
[22] Zhou B X, Li Q, Yao M Y, Xia S, Liu W Q, Chu Y L. Rare Met Mater Eng, 2007; 36: 1129
[22] (周邦新, 李 强, 姚美意, 夏 爽, 刘文庆, 褚于良. 稀有金属材料与工程, 2007; 36: 1129)
[23] Zhou B X, Yao M Y, Li Q, Xia S, Liu W Q, Chu Y L. Rare Met Mater Eng, 2007; 36: 1317
[23] (周邦新, 姚美意, 李 强, 夏 爽, 刘文庆, 褚于良. 稀有金属材料与工程, 2007; 36: 1317)
[24] Sun G C. Master Thesis, Shanghai University, 2012
[24] (孙国成. 上海大学硕士学位论文, 2012)
[25] Woo O T, Griffiths M. J Nucl Mater, 2009; 384: 77
[26] Kim H G, Park J Y, Jeong Y H. J Nucl Mater, 2005; 345: 1
[1] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[2] 司永礼, 薛金涛, 王幸福, 梁驹华, 史子木, 韩福生. Cr添加对孪生诱发塑性钢腐蚀行为的影响[J]. 金属学报, 2023, 59(7): 905-914.
[3] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[4] 廖京京, 张伟, 张君松, 吴军, 杨忠波, 彭倩, 邱绍宇. Zr-Sn-Nb-Fe-V合金在过热蒸汽中的周期性钝化-转折行为[J]. 金属学报, 2023, 59(2): 289-296.
[5] 娄峰, 刘轲, 刘金学, 董含武, 李淑波, 杜文博. 轧制态Mg-xZn-0.5Er合金板材组织及室温成形性能[J]. 金属学报, 2023, 59(11): 1439-1447.
[6] 姜江, 郝世杰, 姜大强, 郭方敏, 任洋, 崔立山. NiTi-Nb原位复合材料的准线性超弹性变形[J]. 金属学报, 2023, 59(11): 1419-1427.
[7] 梁琛, 王小娟, 王海鹏. 快速凝固Ti-Al-Nb合金B2相形成机制与显微力学性能[J]. 金属学报, 2022, 58(9): 1169-1178.
[8] 李亚敏, 张瑶瑶, 赵旺, 周生睿, 刘洪军. CuInconel 718合金Nb偏析影响机理的第一性原理研究[J]. 金属学报, 2022, 58(2): 241-249.
[9] 陈瑞润, 陈德志, 王琪, 王墅, 周哲丞, 丁宏升, 傅恒志. Nb-Si基超高温合金及其定向凝固工艺的研究进展[J]. 金属学报, 2021, 57(9): 1141-1154.
[10] 姜江, 郝世杰, 姜大强, 郭方敏, 任洋, 崔立山. NiTi-NbTi原位复合材料的Lüders带型变形和载荷转移行为[J]. 金属学报, 2021, 57(7): 921-927.
[11] 朱雯婷, 崔君军, 陈振业, 冯阳, 赵阳, 陈礼清. 690 MPa级高强韧低碳微合金建筑结构钢设计及性能[J]. 金属学报, 2021, 57(3): 340-352.
[12] 王明康, 苑峻豪, 刘宇峰, 王清, 董闯, 张中伟. TiZr-Nb二元合金β结构稳定性和力学性能的影响[J]. 金属学报, 2021, 57(1): 95-102.
[13] 吴贇, 刘雅辉, 康茂东, 高海燕, 王俊, 孙宝德. K4169合金循环加载过程中的微观组织演变[J]. 金属学报, 2020, 56(9): 1185-1194.
[14] 蒋一,程满浪,姜海洪,周庆龙,姜美雪,江来珠,蒋益明. 高强度含NNi奥氏体不锈钢08Cr19Mn6Ni3Cu2N (QN1803)的显微组织及性能[J]. 金属学报, 2020, 56(4): 642-652.
[15] 钱月,孙蓉蓉,张文怀,姚美意,张金龙,周邦新,仇云龙,杨健,成国光,董建新. NbFe22Cr5Al3Mo合金显微组织和耐腐蚀性能的影响[J]. 金属学报, 2020, 56(3): 321-332.