金属学报, 2025, 61(6): 866-874 DOI: 10.11900/0412.1961.2024.00187

研究论文

利用热轧制-剪切-弯曲工艺及退火调控Mg-Al-Zn-Mn-Ca 镁合金的织构

游云翔1, 谭力,1,2, 高静静1, 周涛,1, 周志明1

1 重庆理工大学 材料科学与工程学院 重庆 400054

2 重庆渝江压铸股份有限公司 重庆 400000

Controlling the Texture of Mg-Al-Zn-Mn-Ca Magnesium Alloy by Hot Rolling-Shearing-Bending Process and Annealing

YOU Yunxiang1, TAN Li,1,2, GAO Jingjing1, ZHOU Tao,1, ZHOU Zhiming1

1 College of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054, China

2 Chongqing Yujiang Die-Casting Co. Ltd., Chongqing 400000, China

通讯作者: 谭 力,tanli@cqut.edu.cn,主要从事材料表征以及合金疲劳断裂相关研究;周 涛,zt19811118@cqut.edu.cn,主要从事镁合金特种加工工艺及变形行为研究

责任编辑: 梁烨

收稿日期: 2024-06-03   修回日期: 2024-09-11  

基金资助: 国家自然科学基金项目(51901030)
国家自然科学基金项目(52274374)
重庆市自然科学基金项目(cstc2020jcyj-msxmX0877)
重庆市教育委员会科学技术研究项目(KJQN202201160)
重庆理工大学科研创新团队培育计划项目(2023TDZ010)
重庆人力资源和社会保障局博士后研究项目(2022CQBSHTB3110)

Corresponding authors: TAN Li, associate professor, Tel: 13983472537, E-mail:tanli@cqut.edu.cn;ZHOU Tao, professor, Tel: 18696698252, E-mail:zt19811118@cqut.edu.cn

Received: 2024-06-03   Revised: 2024-09-11  

Fund supported: National Natural Science Foundation of China(51901030)
National Natural Science Foundation of China(52274374)
Natural Science Foundation of Chongqing(cstc2020jcyj-msxmX0877)
Science and Technology Research Program of Chongqing Municipal Education Commission(KJQN202201160)
Cultivation Plan of Scientific Research and Innovation Team of Chongqing University of Technology(2023TDZ010)
Postdoctoral Research Project of Chongqing Human Resources and Social Security Bureau(2022CQBSHTB3110)

作者简介 About authors

游云翔,男,2000年生,硕士生

摘要

热轧制后的Mg-Al-Zn-Mn-Ca镁合金具有椭圆形织构特征。为解决该合金成形过程中展现出的对称性不足等问题,本工作通过热轧制-剪切-弯曲(HRSB)工艺,优化了Mg-2Al-2Zn-0.4Mn-0.5Ca镁合金板材的织构,进而改善了材料的室温各向异性。利用EBSD和XRD等表征技术,系统研究了Mg-2Al-2Zn-0.4Mn-0.5Ca镁合金板材在退火过程中的微观结构演化和非基面织构形成机理。结果表明,热轧制后退火温度高于350 ℃时,板材开始表现出沿横向(TD)扩展的椭圆形织构。剪切-弯曲及400 ℃退火处理后,变形过程产生的{101¯2}拉伸孪晶界未发生明显静态再结晶,导致20°~70°范围内对称织构的组分增大,甚至形成一种环形织构。当退火温度升高到450 ℃时,Mg-2Al-2Zn-0.4Mn-0.5Ca合金中基本无法观察到{101¯2}拉伸孪晶,析出相数量增多,再结晶过程中取向随机的晶粒形核,导致环形织构特征消失。HRSB变形过程中,锥面<c + a>滑移被大量激活,成为几何必需位错的主要组成部分。Al、Ca等元素在晶界处共偏析引发的新低能晶界以及非基面滑移导致的取向梯度共同促进了非基面织构的形成。

关键词: Mg-Al-Zn-Mn-Ca 镁合金; 非基面织构; 热轧制; 多尺度表征; 结构演化

Abstract

The Mg-Al-Zn-Mn-Ca magnesium alloy, after hot rolling, forms an elliptical texture, providing good application prospects. However, challenges such as poor symmetry, similar to basal textures, persist in elliptical texture formation. This study explores optimizing the texture of Mg-2Al-02Zn-0.4Mn-0.5Ca Mg alloy sheets using a hot rolling-shearing-bending (HRSB) treatment to improve their room temperature mechanical properties. The research systematically investigates structural evolution during the annealing process and the mechanism behind nonbasal texture formation, using EBSD, XRD, and other characterization techniques. The results show that after annealing at temperatures above 350 oC following hot rolling, the sheets develop an elliptical texture extending toward the transverse direction (TD). Following HRSB treatment and annealing at 400 oC annealing, the {101¯2} extension twins generated during deformation remain uncrystallized, leading to an increase in the relatively symmetrical texture components between 20° and 70°. This also results in the formation of a ring texture. However, as the annealing temperature increases to 450 oC, the {101¯2} extension twins nearly disappear, precipitation phases increase, and the nucleation of randomly oriented grains during recrystallization causes the circular texture characteristics to disappear. During the HRSB deformation process, the pyramidal <c + a> slip becomes significantly activated, dominating the primary dislocation density. The low-energy grain boundaries caused by the co-segregation of Al and Ca atoms at the grain boundaries, as well as the orientation gradient induced by the non-basal slip, jointly contribute to the formation of the non-basal texture.

Keywords: Mg-Al-Zn-Mn-Ca magnesium alloy; non-basal texture; hot rolling; multi-scale characterization; structural evolution

PDF (2640KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

游云翔, 谭力, 高静静, 周涛, 周志明. 利用热轧制-剪切-弯曲工艺及退火调控Mg-Al-Zn-Mn-Ca 镁合金的织构[J]. 金属学报, 2025, 61(6): 866-874 DOI:10.11900/0412.1961.2024.00187

YOU Yunxiang, TAN Li, GAO Jingjing, ZHOU Tao, ZHOU Zhiming. Controlling the Texture of Mg-Al-Zn-Mn-Ca Magnesium Alloy by Hot Rolling-Shearing-Bending Process and Annealing[J]. Acta Metallurgica Sinica, 2025, 61(6): 866-874 DOI:10.11900/0412.1961.2024.00187

镁合金作为当前最理想的轻量化材料,在汽车工业、航天航空等领域有着广阔的应用前景[1~3]。然而,镁合金受其hcp结构的限制,在室温条件下能够激活的独立滑移系不足,导致其塑性较差[4]。热轧制作为一种常见的加工技术,通过显著细化镁晶粒,可有效提高合金塑性[5]。然而,在常规轧制加工过程中,镁合金中易形成强基面织构,不利于滑移系统的开启[6]。添加稀土元素(RE)可在轧制过程中有效弱化镁合金的基面织构[7],但稀土元素提高了成本,限制了镁合金在基础工业中的大规模应用。研究[8]表明,Ca可作为稀土元素的有效替代品被添加到镁合金当中,常见的合金体系包括Mg-Zn-Ca和Mg-Sn-Ca等。Bian等[9]通过轧制工艺制备了Mg-Al-Zn-Mn-Ca板材,发现这种不含稀土元素的镁合金经常规热轧退火处理后,表现出了与稀土镁合金相似的织构特征。因此,Mg-Al-Zn-Mn-Ca镁合金作为一种新型的低成本、高性能合金,受到了广泛关注与研究。

Wang等[10]研究了轧制工艺对Mg-1.6Al-0.8Zn-0.4Mn-0.5Ca合金(AZMX1100)织构和力学性能的影响,发现经单向轧制及退火处理后的板材表现出沿横向(TD)扩展和轧制方向(RD)收拢的织构特征,交叉轧制后的板材则表现出沿RD扩展的椭圆形织构特征。然而,具有这种扩展椭圆形织构的镁合金板材在变形过程中仍然存在着较强的各向异性,降低了合金板材在室温下的成形性。Li等[11]研究了Zn含量对热轧后的铸造Mg-1.2Al-0.5Ca-0.4Mn-xZn合金板力学性能和结构演化的影响,发现随着Zn含量的增加,Mg-1.2Al-0.5Ca-0.4Mn-xZn合金薄片的室温拉伸成形性提高。

鉴于此,本工作在Mg-1.6Al-0.8Zn-0.4Mn-0.5Ca的基础上适当增加了Zn含量。对熔炼得到的Mg-2Al-2Zn-0.4Mn-0.5Ca镁合金板材进行单向热轧制变形,研究了热轧态Mg-2Al-2Zn-0.4Mn-0.5Ca镁合金板材在退火过程中的结构演化。热轧制后形成的椭圆形织构沿TD扩展,特别是在室温变形条件下,表现出了较强的各向异性[10]。近年来,一种旨在改善镁合金板材织构的新型综合加工工艺得以开发,该工艺通过将热轧制和剪切-单道次弯曲相结合实现。Song等[12]研究表明,AZ31镁合金经过上述新型加工工艺以及后续退火处理后,板材表现出向RD倾斜的双峰织构特征。依据Taylor模型分析,这种双峰织构的形成主要与二阶锥面滑移有关[13]。基于此,本工作采用本团队开发的热轧制-剪切-弯曲(HRSB)工艺,使Mg-2Al-2Zn-0.4Mn-0.5Ca镁合金板材由椭圆形织构转变为非基面织构类型,并系统研究了这种非基面织构的形成机理,旨在为开发低成本、各向同性的Mg-Al-Zn-Mn-Ca系列合金板材提供新思路。

1 实验方法

铸态Mg-2Al-2Zn-0.4Mn-0.5Ca镁合金的主要化学成分(质量分数,%)为:Al 2.2,Zn 2.3,Mn 0.39,Ca 0.47,Mg余量。其制备工艺如下:将Mg基体在700 ℃熔化,随后向熔体中加入纯Al锭、纯Zn锭以及Mg-5%Mn、Mg-20%Ca中间合金。待合金元素全部溶解进Mg基体后,将熔体在720 ℃保温20 min。在SF6和CO2气体保护下对熔体进行精炼处理,同时搅拌、打渣。将熔体升温至740 ℃,并保温20 min,待渣/液分离后进行打渣。最后将熔体倒入尺寸为150 mm × 20 mm × 100 mm的350 ℃模具中进行凝固。采用ICP-5000电感耦合等离子体原子发射光谱仪测量铸态镁合金的实际化学成分。如图1所示,将铸态镁合金切割成3.5 mm厚的薄片,并在保温炉内进行均匀化处理(450 ℃保温12 h)。以每次15%的减薄率进行轧制,共6个道次,热轧制后合金的厚度为1.32 mm,轧机辊径为175 mm,轧机转速为600 r/min,每个道次之间对板材进行400 ℃保温5 min的处理。

图1

图1   热轧制前铸态Mg-2Al-2Zn-0.4Mn-0.5Ca 镁合金薄片的宏观形貌

Fig.1   Macroscopic photograph of the as-cast Mg-2Al-2Zn-0.4Mn-0.5Ca magnesium alloy sheets before hot rolling


利用Empyrean 2 X射线衍射仪(XRD)测定未退火以及不同温度退火(350、400、450 ℃)后的热轧态板材的宏观织构。对未退火的热轧态Mg-2Al-2Zn-0.4Mn-0.5Ca镁合金板材进行最后的剪切-弯曲处理,板材厚度为1.25 mm。剪切-弯曲相关流程及具体参数参照文献[14]。随后分别在400、450 ℃下退火1 h。选取400 ℃退火后的非基面织构Mg-2Al-2Zn-0.4Mn-0.5Ca板材,沿RD和TD切割成狗骨头状拉伸试样,然后在SANS试验机上以1 × 10-3 s-1的应变速率进行室温单轴拉伸实验,力学试样的尺寸和取样方式与文献[15]一致,采用3个平行样以提高实验准确性。采用配有电子背散射衍射(EBSD)探头的Apreo 2S场发射电子显微镜(FE-SEM)对退火后的样品进行显微组织观察,扫描步长为0.5 µm。采用Channel 5和OIM analysis软件提取和分析EBSD数据。通过转轴和取向差识别{101¯2}拉伸孪晶,转轴为<12¯10>,取向差为86.3°,差值设定2°。EBSD样品的制备方法详见文献[16]。

2 实验结果

2.1 热轧态Mg-2Al-2Zn-0.4Mn-0.5Ca 镁合金板材的织构特征

为了研究后续剪切-弯曲工艺对Mg-2Al-2Zn-0.4Mn-0.5Ca镁合金板材织构的影响,采用XRD测量前期热轧制过程中的织构演化。热轧制后镁合金板材的宏观织构如图2a所示,板材表现出了弱基面织构特征,织构最大极密度为6.274。因为极低的临界分切应力(CRSS),镁合金的基面<a>滑移常作为室温下协调塑性变形的主要机制[17]。然而,基面滑移会导致基面织构的形成[18],不利于板材的后续成形。研究[19]表明,升高轧制温度能够显著弱化基面织构。此外,添加Ca、Zn以及RE元素可以增加非基面滑移的活性[8],起到弱化基面织构效果。因此,经过400 ℃、6道次热轧制后,Mg-2Al-2Zn-0.4Mn-0.5Ca镁合金板材的基面织构得到弱化,并没有表现出与纯Mg以及AZ31系合金类似的强基面织构特征[20,21]图2b~d为不同温度退火后Mg-2Al-2Zn-0.4Mn-0.5Ca 镁合金板材的织构演化。退火温度为350 ℃时,基面织构进一步弱化,从(0002)极图中可以看出,最大极密度为4.372。随着退火温度升高,400 ℃时织构开始出现沿TD扩展的织构分量,此特征在450 ℃时表现得尤为显著。沿TD扩展的椭圆形织构特征,与静态再结晶(SRX)形核和晶粒优先长大相关[22]。Wang等[23]研究表明,当退火温度较低(200~300 ℃)时,Al2Ca相、压缩孪晶、2个孪晶之间的相交处、二次孪晶与晶界相交处以及非基底滑移共同诱发了TD取向晶粒的优先形核;当退火温度较高(300~450 ℃)时,晶粒长大开始在再结晶过程中占据主导地位。Al、Zn、Ca元素在晶界处发生偏析,促使TD取向晶粒优先长大,并抑制了退火过程中RD取向晶粒的长大过程。

图2

图2   热轧制及退火态Mg-2Al-2Zn-0.4Mn-0.5Ca镁合金板材的织构演化

Fig.2   Texture evolutions of hot-rolled (a) and as-annealed (b-d) Mg-2Al-2Zn-0.4Mn-0.5Ca magnesium alloy sheets (RD—rolling direction, TD—transverse direction)

(b) 350 oC for 1 h (c) 400 oC for 1 h (d) 450 oC for 1 h


2.2 剪切-弯曲工艺处理后Mg-2Al-2Zn-0.4Mn-0.5Ca镁合金板材的微观组织及织构特征

图3为经HRSB工艺以及退火处理后Mg-2Al-2Zn-0.4Mn-0.5Ca镁合金板材的微观组织。如图3ab所示,400 ℃退火1 h后,仍可在试样组织中观察到HRSB工艺引入的{101¯2}拉伸孪晶,织构呈现出较对称的环形特征。如图3cd所示,当退火温度升高至450 ℃时,组织中已无法观察到{101¯2}拉伸孪晶的存在,对称的环形织构特征消失,整体织构特征向法线方向(ND)靠拢。此状态下组织中存在大量有序的黑色带,这种特征也在AZMX1100镁合金中出现,其主要为Al2Ca和Al8Mn5析出相[23]。值得注意的是,450 ℃时试样中织构的最大极密度发生较大变化,这是由于该区域出现了一个异常长大的晶粒。图4为不同温度退火处理后Mg-2Al-2Zn-0.4Mn-0.5Ca镁合金板材的晶粒取向分布(grain orientation spread,GOS)图(GOS图可用于评估合金的再结晶程度[24],其中蓝色区域为再结晶晶粒,黄色区域为亚晶粒,红色区域为变形晶粒)。如图4所示,400 ℃退火后,由于{101¯2}孪晶以及相应的基体并未发生静态再结晶,合金中仍存在着变形晶粒以及亚晶粒;而450 ℃退火后,合金中则主要存在大量再结晶晶粒。

图3

图3   不同退火温度下热轧制-剪切-弯曲(HRSB)处理后Mg-2Al-2Zn-0.4Mn-0.5Ca镁合金板材的微观组织

Fig.3   Inverse pole figures (IPFs) (a, c) and pole figures (PFs) (b, d) of Mg-2Al-2Zn-0.4Mn-0.5Ca magnesium alloy sheets processed by hot rolling-shearing-bending (HRSB) at various annealing temperatures

(a, b) 400 oC for 1 h (c, d) 450 oC for 1 h


图4

图4   HRSB工艺处理后Mg-2Al-2Zn-0.4Mn-0.5Ca镁合金板材在不同退火温度下的晶粒取向分布(GOS)图

Fig.4   Grain orientation spread (GOS) maps of Mg-2Al-2Zn-0.4Mn-0.5Ca magnesium alloy sheets after processed by HRSB at various annealing temperatures (The blue areas represent recrystallized grains, the yellow areas represent subgrains, and the red areas represent deformed grains)

(a) 400 oC for 1 h (b) 450 oC for 1 h


2.3 非基面织构Mg-2Al-2Zn-0.4Mn-0.5Ca 合金板材的力学性能

为了理解非基面织构对Mg-2Al-2Zn-0.4Mn-0.5Ca合金板材室温力学性能的影响,图5为经HRSB及400 ℃退火处理后,沿RD和TD拉伸后Mg-2Al-2Zn-0.4Mn-0.5Ca镁合金板材的室温真应力-应变曲线,相关的力学性能数据如表1所示。经过HRSB处理后,板材沿RD的屈服强度(YS)、抗拉强度(UTS)以及延伸率(FE)分别为112 MPa、232 MPa以及20.9%;沿TD的YS、UTS以及FE分别为95 MPa、201 MPa以及17.3%。尽管Mg-2Al-2Zn-0.4Mn-0.5Ca镁合金板材沿2个方向进行拉伸后,其屈服强度及抗拉强度分别存在一定差异,但具有相似的屈强比(0.483和0.472)。这表明环形织构的形成降低了Mg-2Al-2Zn-0.4Mn-0.5Ca镁合金板材的各向异性,一定程度上改善了室温力学性能的非对称性。图6为经HRSB及400 ℃退火处理后,沿RD和TD拉伸后Mg-2Al-2Zn-0.4Mn-0.5Ca镁合金板材的加工硬化曲线。可以看出,沿2个方向拉伸后的样品经历了不同的加工硬化阶段。较TD拉伸样品,沿RD拉伸的样品还经历了一个平缓的加工硬化阶段。TD曲线表现出的变化趋势主要由滑移位错所主导,而RD曲线的变化趋势则受到滑移位错和形变孪晶共同影响[25,26]

图5

图5   HRSB处理及400 ℃退火1 h后,非基面织构Mg-2Al-2Zn-0.4Mn-0.5Ca镁合金板材沿不同方向拉伸后的室温真应力-应变曲线

Fig.5   Room temperature true stress-strain curves after tensile tests along RD and TD for Mg-2Al-2Zn-0.4Mn-0.5Ca magnesium alloy sheets with non-basal texture after HRSB treatment and annealing at 400 oC for 1 h


表1   沿不同方向拉伸后试样的室温力学性能

Table 1  Mechanical properties of samples after room temperature tensile tests

Loading direction

YS

MPa

UTS

MPa

FE

%

YS /

UTS

RD11223220.90.483
TD9520117.30.472

Note: YS—yield strength, UTS—ultimate tensile strength, FE—fracture elongation

新窗口打开| 下载CSV


图6

图6   HRSB处理及400 ℃退火1 h后,非基面织构Mg-2Al-2Zn-0.4Mn-0.5Ca镁合金板材沿不同方向拉伸后的室温加工硬化曲线

Fig.6   Room temperature true strain hardening curves after tensile tests along RD and TD for Mg-2Al-2Zn-0.4Mn-0.5Ca magnesium alloy sheets with non-basal texture after HRSB treatment and annealing at 400 oC for 1 h


图7为拉伸变形前,具有非基面织构的Mg-2Al-2Zn-0.4Mn-0.5Ca镁合金板材在RD和TD 2个方向上,基面<a>滑移和柱面<a>滑移的Schmid因子(SF)分布。对于滑移系统而言,在RD和TD 2个加载方向上,基面和柱面滑移的SF分布变化并不明显,这归因于400 ℃退火后环形织构的形成。因此,2个加载方向上合金力学性能的差异主要是由形变孪晶所带来的。值得注意的是,从原始板材的SF分布来看,这种具有非基面织构的Mg-2Al-2Zn-0.4Mn-0.5Ca镁合金板材室温拉伸时柱面<a>滑移比基面<a>滑移表现得更活跃。

图7

图7   拉伸前非基面织构Mg-2Al-2Zn-0.4Mn-0.5Ca 镁合金板材沿不同方向滑移系统的Schmid因子(SF)分布

Fig.7   Distribution of schmid factor (SF) in basal <a> slip (a) and prismatic <a> slip (b) systems of non-basal textured Mg-2Al-2Zn-0.4Mn-0.5Ca magnesium alloy sheet in different loading directions before uniaxial tension


3 分析与讨论

由于{101¯2}拉伸孪晶的存在,400 ℃退火1 h后,Mg-2Al-2Zn-0.4Mn-0.5Ca镁合金板材中仍可观察到变形晶粒(图4)。为了探究这些{101¯2}拉伸孪晶对织构的影响,选择了一个具有代表性的区域进行分析,如图8所示(图8b中黑色、绿色虚线代表了多数基体的取向分布,红色代表了{101¯2}拉伸孪晶的取向分布)。该区域对应的晶界和局部取向差(kernel average misorientation,KAM)如图9所示(图9a中红色实线表示{101¯2}孪晶界)。KAM可以间接衡量位错密度和局部应变能,颜色越深表示局部应变能越大[27]。{101¯2}拉伸孪晶极少成为再结晶形核的有效点位[28],这主要是由于{101¯2}孪晶的孪晶界处产生的局部应变较低。由图9b中可以看出,KAM图中高应变区域与{101¯2}孪晶界并不重合,而是主要分布在小角度晶界处,与文献[27]结果一致。这些激活{101¯2}孪晶的基体主要分布在图8b中的黑色和绿色的椭圆形区域内,{101¯2}孪晶则主要位于红色椭圆形区域内。

图8

图8   400 ℃退火1 h后Mg-2Al-2Zn-0.4Mn-0.5Ca镁合金板材的电子背散射衍射(EBSD)像以及孪晶与相应基体的几何位置关系

Fig.8   EBSD image of the selected region in Fig.4a of Mg-2Al-2Zn-0.4Mn-0.5Ca magnesium alloy sheet annealed at 400 oC for 1 h (The grey cubes represent schematic illustration of the matrix and twin) (a) and the geometric relationship between twins and their corresponding matrix positions (The black and green dashed lines represent the majority of the matrix orientation distribution, and the red dashed line represents the orientation distribution of {101¯2} extension twins) (b)


图9

图9   图8所示区域的晶界图及局部取向差(KAM)图

Fig.9   Grain boundary map (a) and kernel average misorientation (KAM) map (b) of the selected region in Fig.8 (Red lines in Fig.9a represent {101¯2} extension twin boundaries, the deeper the green color in Fig.9b represents the higher the dislocation density)


图8b中黑色椭圆形区域内的晶粒,其c轴由ND向RD倾斜。如前文所述,轧制变形过程中向RD分散的双峰织构主要与锥面<c + a>滑移有关。退火温度达到450 ℃时,大部分晶粒已经发生完全再结晶(图4b),因此位错密度较低。退火温度为400 ℃时,仍可观察到由滑移位错留下的小角度晶界(图4a)。采用Pantleon[29]提出的一种非负位错密度估算法,计算图4所示的2个区域的几何必需位错(GND)密度的估算值,如图10所示。计算结果表明,在HRSB过程中,锥面<c + a>滑移被大量激活,成为位错的主要组成部分。锥面<c + a> GND的估算值远高于基面和柱面<a>。因此,非基面滑移所引起的取向梯度可以促进亚晶粒的形成,使得c轴由ND向RD倾斜的晶粒优先形核[21]

图10

图10   图4所示区域非基面织构Mg-2Al-2Zn-0.4Mn-0.5Ca镁合金板材各滑移系统的几何必需位错(GND)密度估算值分布

Fig.10   Distributions of estimated geometrical necessary dislocation (GND) density for each slip system of non-basal textured Mg-2Al-2Zn-0.4Mn-0.5Ca magnesium alloy sheets annealed at different temperatures of the regions in Figs.4a and b


图8b中绿色椭圆形区域内的晶粒,其c轴由ND向TD倾斜。图11为HRSB处理及400 ℃退火1 h后Mg-2Al-2Zn-0.4Mn-0.5Ca镁合金板材中8种特殊晶界的旋转轴分布。结果表明,退火400 ℃退火1 h后,样品中除保留了密排六方金属中的常规低能晶界[30] (28°<011¯0>、32°<1¯21¯0>、58°<011¯0>、62°<1¯21¯0>、73°<011¯0>以及75°<1¯21¯0>,图11中红色虚线所标)外,还形成了58°<1¯21¯0>和73°<1¯21¯0>等新的低能晶界(图11中黑色虚线所标)。这可能是由于Al、Zn、Ca等溶质原子在晶界处发生共偏析[21],从而显著降低了晶界处的应变能[31]。因此,这些高角度低能晶界阻碍了基面取向的晶粒生长,使TD取向的晶粒优先长大。

图11

图11   HRSB处理及400 ℃退火1 h后Mg-2Al-2Zn-0.4Mn-0.5Ca镁合金板材中8种特殊晶界的旋转轴分布图

Fig.11   Rotation axis distribution maps of 8 special grain boundaries in Mg-2Al-2Zn-0.4Mn-0.5Ca magnesium alloy sheet processed by HRSB and annealed at 400 oC for 1 h (The red dashed lines represent the conventional low-energy grain boundaries that occur during the annealing process of hcp metals, while the black dashed lines represent the newly generated low-energy grain boundaries)


为了描述退火温度对Mg-2Al-2Zn-0.4Mn-0.5Ca镁合金板材织构演化的影响,将织构依照取向差分成4组,分别是0°~20° (在这个范围内的织构通常称为基面取向)、20°~45°、45°~70°和70°~90°,如图12所示。当退火温度为400 ℃时(图12a~d),仍可观察到取向差大于20°的基体激活{101¯2}拉伸孪晶,这些孪晶分布于45°~90°组内,导致晶粒基面发生约86°的旋转,并在极图中形成了环形的织构特征。如图12e~h所示,当退火温度升高到450 ℃时,取向不利于基面<a>滑移的{101¯2}拉伸孪晶被晶界、剪切带以及第二相粒子处形成的再结晶晶粒所消耗,而取向有利于基面<a>滑移的{101¯2}拉伸孪晶则可能发生再结晶[32,33]。除晶界处形成的再结晶晶粒外,上述其他区域形成的再结晶晶粒均具有随机取向[28,33,34]。因此,取向差在20°~70°之间的织构减少,对称织构消失,取向差在70°~90°间的柱面晶粒分布也更加随机,形成了一种较弥散的非基面织构特征。

图12

图12   不同退火温度后非基面织构Mg-2Al-2Zn-0.4Mn-0.5Ca镁合金板材的织构组分分布

Fig.12   Texture component distributions of non-basal textured Mg-2Al-2Zn-0.4Mn-0.5Ca magnesium alloy sheets annealed at 400 oC (a-d) and 450 oC (e-h) for 1 h (Insets are corresponding (0002) pole figures)

(a, e) 0°-20° group (b, f) 45°-70° group (c, g) 20°-45° group (d, h) 70°-90° group


4 结论

(1) 热轧制后Mg-2Al-2Zn-0.4Mn-0.5Ca镁合金板材表现出弱基面织构特征,退火温度高于350 ℃时,开始出现沿TD扩展的椭圆形织构。

(2) 热轧制-剪切-弯曲及退火处理后,Mg-2Al-2Zn-0.4Mn-0.5Ca镁合金板材的力学各向异性显著降低。400 ℃退火时板材表现出环形的织构特征,锥面<c + a>滑移引起的取向梯度使RD取向晶粒优先形核,Al、Zn、Ca等溶质原子共偏析形成的新低能晶界抑制了基面取向晶粒的再结晶长大过程,使TD取向晶粒优先长大。区域内未发生再结晶的{101¯2}拉伸孪晶引起了对称织构的出现,在极图中表现出了成环的织构趋势。当退火温度上升到450 ℃时,{101¯2}拉伸孪晶消失,形成取向较随机的非基面织构。

参考文献

Deswal N, Kant R.

Machinability and surface integrity analysis of magnesium AZ31B alloy during laser assisted turning

[J]. J. Manuf. Processes, 2023, 101: 527

[本文引用: 1]

Zhang Y, Shao J B, Chen T, et al.

Deformation mechanism and dynamic recrystallization of Mg-5.6Gd-0.8Zn alloy during multi-directional forging

[J]. Acta Metall. Sin., 2020, 56: 723

DOI     

Multi-directional forging (MDF) is an effective way to fabricate wrought magnesium alloy with ultrafine grains and random texture. Therefore, microstructure evolution and dynamic recrystallization (DRX) of magnesium alloys during MDF process have been widely investigated. Mg-Zn-RE alloys containing long-period stacking ordered (LPSO) phase have received considerable attention owing to their excellent mechanical properties. In addition, LPSO phase has great effects on the deformation mechanism and DRX behavior. Still, limited comprehensive studies can be found in the literature dealing with the microstructure evolution, deformation mechanism and DRX of magnesium alloys containing LPSO phase in MDF deformation. In this work, MDF was applied to a Mg-5.6Gd-0.8Zn (mass fraction, %) alloy containing LPSO phase. Microstructure characteristics, deformation mechanism and DRX behavior of the material in different passes were examined. Results show that there are several stages of the microstructure evolution. Twinning was activated only in a small part of grains in the early stage of deformation. As the forging direction changes, the number of twinned grains and the volume fraction of DRX grains increased. A mixed structure with coarse deformed grain and DRX grains was sustained till last forging pass, and the average size of DRX grains is about 4 μm with a random orientation. {101ˉ2} tensile twinning is the main deformation mechanism and the selection of twin variants was dominated by the Schmid law. Change in forging direction is beneficial to twinning stimulation in grains of different orientations. Kink and slipping deformation could effectively accommodate the plastic strain where the operation of twinning was hindered. Kink deformation resulted in lattice rotation predominately about the <101ˉ0> axis. DRX grains nucleated at different places during the forging process. Not only the grain boundaries and the twinned region, but also kink boundaries can induce the nucleation of DRX grains. Eventually, the twinned regions were transformed to a strip-like recrystallization structure. Under the combined influence of twinning and kinking, as well as DRX induced by twins, kink bands and grain boundaries, the initial coarse grains were significantly refined.

张 阳, 邵建波, 陈 韬 .

Mg-5.6Gd-0.8Zn合金多向锻造过程中的变形机制及动态再结晶

[J]. 金属学报, 2020, 56: 723

Zhang J Y, Miao J S, Balasubramani N, et al.

Magnesium research and applications: Past, present and future

[J]. J. Magnes. Alloy., 2023, 11: 3867

[本文引用: 1]

Gao Y P, Zhao L, Zha M, et al.

Twinning-induced plasticity with multiple twinning modes and disclinations in Mg alloys

[J]. Int. J. Plast., 2023, 164: 103595

[本文引用: 1]

Abdelgaliel I H, Bakr M A, Elkhodary K I, et al.

Experimental and computational investigation of Mg AZ31 grain refinement by shear-enhanced rolling

[J]. Mater. Today Commun., 2023, 35: 106362

[本文引用: 1]

Luo A A, Shi R H, Miao J S, et al.

Review: Magnesium sheet alloy development for room temperature forming

[J]. JOM, 2021, 73: 1403

[本文引用: 1]

Hou X L, Zhai Y X, Zhang P, et al.

Rare earth texture analysis of rectangular extruded Mg alloys and a comparison of different alloying adding ways

[J]. Rare. Met., 2016, 35: 850

[本文引用: 1]

Zeng Z R, Bian M Z, Xu S W, et al.

Effects of dilute additions of Zn and Ca on ductility of magnesium alloy sheet

[J]. Mater. Sci. Eng., 2016, A674: 459

[本文引用: 2]

Bian M Z, Sasaki T T, Suh B C, et al.

A heat-treatable Mg-Al-Ca-Mn-Zn sheet alloy with good room temperature formability

[J]. Scr. Mater., 2017, 138: 151

[本文引用: 1]

Wang Q H, Jiang B, Liu L T, et al.

Reduction per pass effect on texture traits and mechanical anisotropy of Mg-Al-Zn-Mn-Ca alloy subjected to unidirectional and cross rolling

[J]. J. Mater. Res. Technol., 2020, 9: 9607

[本文引用: 2]

Li Z H, Sasaki T T, Bian M Z, et al.

Role of Zn on the room temperature formability and strength in Mg-Al-Ca-Mn sheet alloys

[J]. J. Alloys Compd., 2020, 847: 156347

[本文引用: 1]

Song D H, Zhou T, Tu J, et al.

Improved stretch formability of AZ31 sheet via texture control by introducing a continuous bending channel into equal channel angular rolling

[J]. J. Mater. Process. Technol., 2018, 259: 380

[本文引用: 1]

Nakata T, Kamado S.

Towards tailoring basal texture of rolled Mg alloy sheet by recrystallization for high room-temperature formability: A review

[J]. J. Magnes. Alloy., 2023, 11: 3992

[本文引用: 1]

Shi L X, Hu L, Lv H Y, et al.

Microstructure and texture evolution of AZ31 magnesium alloy thin sheet processed by hot-rolling-shearing-bending

[J]. Met. Mater. Int., 2022, 28: 1224

[本文引用: 1]

Wang L J, Hu L, Miao T H, et al.

Effect of pre-deformation on mechanical behavior and microstructure evolution of AZ31 Mg alloy sheet with bimodal non-basal texture at room temperature

[J]. Acta Metall. Sin., 2024, 60: 881

DOI      [本文引用: 1]

An AZ31 Mg alloy sheet with bimodal non-basal texture exhibits good formability at room temperature. However, its initial yield stress (YS) is relatively low during uniaxial tension along the rolling direction (RD) at room temperature, which limits its potential for further application. Recent studies have demonstrated that introducing {101¯2} extension twin (ET) through predeformation can improve the mechanical properties of Mg alloy sheets with a basal texture at room temperature. However, the predeformation process for Mg alloy sheets with non-basal texture has rarely been investigated, along with their subsequent plastic deformation behavior at room temperature. Therefore, to investigate the room temperature deformation behavior and microstructure evolution of an AZ31 Mg alloy sheet with bimodal non-basal texture after predeformation, this work exerted a 5% thickness reduction on the sheet via cryogenic rolling. Then uniaxial tension experiments at room temperature and microstructure characterization experiments were conducted to illuminate the effect of predeformation on the mechanical behavior and microstructure evolution of the fabricated sheet. The findings indicate that when loaded along the RD, the YS and fracture elongation (FE) of the predeformed sample are 212.5% larger and 56.9% smaller than those of the non-predeformed sample. When loaded along the transverse direction (TD), the YS and FE of the predeformed sample are 6.7% smaller and 37.9% larger than those of the non-predeformed sample. The difference in YS in the predeformed samples is primarily attributed to easier activation of basal <a> slip in grains with a TD texture component in the TD sample than in grains with a bimodal non-basal texture component in the RD sample. The difference in FE in the predeformed samples is due to the inhibition of the expansion of preexsiting {101¯2} ETs in the RD sample, resulting in the early occurrence of {101¯1} compression twins (CTs). In comparison, the expansion of preexsiting {101¯2} ETs can be effectively performed in the TD sample. Additionally, some {101¯1}-{101¯2} double twins (DTs) would be activated at the later stage of tensile deformation to sustain and/or accommodate local plastic strain.

汪丽佳, 胡 励, 苗天虎 .

预变形对双峰分离非基面织构AZ31镁合金板材室温力学行为及微观组织演变的影响

[J]. 金属学报, 2024, 60: 881

DOI      [本文引用: 1]

为揭示双峰分离非基面织构AZ31镁合金板材预变形后的室温变形行为及微观组织演化规律,对该板材施加压下量5%的深冷轧制预变形,结合室温单轴拉伸和微观组织表征实验,研究预变形对制备板材力学行为及微观组织演变的影响。结果表明,沿轧制方向(RD)试样的初始屈服强度和断裂延伸率较未预变形试样分别提升212.5%和降低56.9%。沿板材横向(TD)试样的初始屈服强度和断裂延伸率较未预变形试样分别降低6.7%和提升37.9%。不同方向试样初始屈服强度的差异主要是由于TD试样中TD织构组分所对应的晶粒比RD试样中双峰分离非基面织构组分所对应的晶粒更容易激活基面<a>滑移。断裂延伸率的差异主要是由于在RD试样中,{101¯2}拉伸孪晶的扩张受到抑制,会较早出现{101¯1}压缩孪晶,而在TD试样中,{101¯2}拉伸孪晶可以有效扩张,且后期出现一定数量的{101¯1}-{101¯2}双孪晶来承载/协调塑性应变。

You Y X, Tan L, Yan Y Q, et al.

Microstructure evolution and twinning behavior of AZ31 magnesium alloy sheets with bimodal texture during cold deep-drawing deformation

[J]. Mater. Today Commun., 2024, 39: 109343

[本文引用: 1]

Yu H H, Xin Y C, Cheng Y, et al.

The different hardening effects of tension twins on basal slip and prismatic slip in Mg alloys

[J]. Mater. Sci. Eng., 2017, A700: 695

[本文引用: 1]

Li X, Qi W.

Effect of initial texture on texture and microstructure evolution of ME20 Mg alloy subjected to hot rolling

[J]. Mater. Sci. Eng., 2013, A560: 321

[本文引用: 1]

Huang X S, Suzuki K, Chino Y.

Annealing behaviour of Mg-3Al-1Zn alloy sheet obtained by a combination of high-temperature rolling and subsequent warm rolling

[J]. J. Alloys Compd., 2011, 509: 4854

[本文引用: 1]

Go J B, Lee J U, Moon B G, et al.

Improvement in mechanical properties of rolled AZ31 alloy through combined addition of Ca and Gd

[J]. Met. Mater. Int., 2020, 26: 1779

[本文引用: 1]

Han G K, Park H K, Kim H K, et al.

Local and global deformation behaviour in rolled pure magnesium sheets at room temperature under different strain rates

[J]. Mater. Sci. Eng., 2019, A762: 138110

[本文引用: 3]

Wang Q H, Jiang B, Tang A T, et al.

Formation of the elliptical texture and its effect on the mechanical properties and stretch formability of dilute Mg-Sn-Y sheet by Zn addition

[J]. Mater. Sci. Eng., 2019, A746: 259

[本文引用: 1]

Wang Q H, Jiang B, Tang A T, et al.

Unveiling annealing texture formation and static recrystallization kinetics of hot-rolled Mg-Al-Zn-Mn-Ca alloy

[J]. J. Mater. Sci. Technol., 2020, 43: 104

DOI      [本文引用: 2]

The development of Mg-Al-Zn-Mn-Ca series alloys provides a potential prospect to achieve high strength and formability at room temperature (RT). The formation of elliptical annular texture is treated as a crucial factor for the enhanced RT formability. However, the origin of such an elliptical annular texture formation has been rarely reported. Herein, we unveiled the formation and evolution of elliptical annular texture in the hot-rolled Mg-1.6Al-0.8Zn-0.4Mn-0.5Ca (AZMX1100, wt.%) alloy after annealing at different temperatures for 1 h, and its static recrystallization (SRX) kinetics in given annealing temperature for different time. The results revealed that the formation of elliptical annular texture in the hot-rolled AZMX1100 alloy after annealing was derived from nucleation-oriented SRX mechanism, which took place in 200-300 °C, induced by cracked chain-shaped Al2Ca phases, contraction twins, intersections of double twins, intersections of double twins and grain boundaries and non-basal slips. On further annealing from 300-450 °C, the grains with 45°-70° transverse direction (TD) preferentially grew, which made elliptical annular texture extended along the TD. Based on the Johnson-Mehl-Avrami-Kolmogorov (JMAK) model, Avrami exponent n value was estimated to be 0.68-1.02, attributed to non-random SRX nucleation, giving rise to the lower activation energy QR of nucleation of ~74.24 kJ/mol. Since the co-segregation of Al, Zn and Ca atoms in grain boundaries created a strong interaction of solutes and grain boundaries, the hot-rolled AZMX1100 alloy exhibited the higher activation energy Qg (~115.48 kJ/mol) of grain growth.

Zhou H T, Kong F T, Wu K, et al.

Hot pack rolling nearly lamellar Ti-44Al-8Nb-(W, B, Y) alloy with different rolling reductions: Lamellar colonies evolution and tensile properties

[J]. Mater. Des., 2017, 121: 202

[本文引用: 1]

Song B, Xin R L, Guo N, et al.

Influence of basal slip activity in twin lamellae on mechanical behavior of Mg alloys

[J]. Mater. Lett., 2016, 176: 147

[本文引用: 1]

Jiang L, Jonas J J, Mishra R K, et al.

Twinning and texture development in two Mg alloys subjected to loading along three different strain paths

[J]. Acta Mater., 2007, 55: 3899

[本文引用: 1]

Wu Y S, Liu Z, Qin X Z, et al.

Effect of initial state on hot deformation and dynamic recrystallization of Ni-Fe based alloy GH984G for steam boiler applications

[J]. J. Alloys Compd., 2019, 795: 370

[本文引用: 2]

Basu I, Al-Samman T.

Twin recrystallization mechanisms in magnesium-rare earth alloys

[J]. Acta Mater., 2015, 96: 111

[本文引用: 2]

Pantleon W.

Resolving the geometrically necessary dislocation content by conventional electron backscattering diffraction

[J]. Scr. Mater., 2008, 58: 994

[本文引用: 1]

Wang J, Beyerlein I J.

Atomic structures of symmetric tilt grain boundaries in hexagonal close packed (hcp) crystals

[J]. Modell. Simul. Mater. Sci. Eng., 2012, 20: 024002

[本文引用: 1]

Zhang J, Dou Y C, Dong H B.

Intrinsic ductility of Mg-based binary alloys: A first-principles study

[J]. Scr. Mater., 2014, 89: 13

[本文引用: 1]

Griffiths D.

Explaining texture weakening and improved formability in magnesium rare earth alloys

[J]. Mater. Sci. Technol., 2015, 31: 10

[本文引用: 1]

Guan D K, Mark Rainforth W, Ma L, et al.

Twin recrystallization mechanisms and exceptional contribution to texture evolution during annealing in a magnesium alloy

[J]. Acta Mater., 2017, 126: 132

[本文引用: 2]

Drouven C, Basu I, Al-Samman T, et al.

Twinning effects in deformed and annealed magnesium-neodymium alloys

[J]. Mater. Sci. Eng., 2015, A647: 91

[本文引用: 1]

/