金属学报, 2021, 57(10): 1258-1271 DOI: 10.11900/0412.1961.2021.00058

研究论文

AZ31镁合金表面苯丙氨酸、甲硫氨酸和天冬酰胺诱导Ca-P涂层耐蚀性能比较

王雪梅1, 殷正正1, 于晓彤1, 邹玉红2, 曾荣昌,1,3,4

1.山东科技大学 材料科学与工程学院 青岛 266590

2.山东科技大学 化学与生物工程学院 青岛 266590

3.郑州大学 材料科学与工程学院 郑州 450002

4.武汉理工大学 现代汽车零部件技术湖北省重点实验室 武汉 430070

Comparison of Corrosion Resistance of Phenylalanine, Methionine, and Asparagine-Induced Ca-P Coatings on AZ31 Magnesium Alloys

WANG Xuemei1, YIN Zhengzheng1, YU Xiaotong1, ZOU Yuhong2, ZENG Rongchang,1,3,4

1.School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China

2.School of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China

3.School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450002, China

4.Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan 430070, China

通讯作者: 曾荣昌,rczeng@foxmail.com,主要从事镁合金腐蚀与防护研究

收稿日期: 2021-02-01   修回日期: 2021-04-22   网络出版日期: 2021-09-27

基金资助: 国家自然科学基金项目.  52071191
山东省自然科学基金项目.  ZR2020ME011
现代汽车零部件技术湖北省重点实验室开放课题项目.  XDQCKF2021006

Corresponding authors: ZENG Rongchang, professor, Tel:(0532)80681226, E-mail:rczeng@foxmail.com

Received: 2021-02-01   Revised: 2021-04-22   Online: 2021-09-27

作者简介 About authors

王雪梅,女,1996年生,硕士生

摘要

为澄清氨基酸基团对成膜的影响,采用苯丙氨酸(Phenylalanine,Phe)、甲硫氨酸(Methionine,Met)和天冬酰胺(Asparagine,Asn) 3种氨基酸调控AZ31镁合金的降解速率,采用恒温水浴法(60℃)在其表面制备了3种氨基酸Ca-P涂层(Ca-PPhe、Ca-PMet和Ca-PAsn),并使用SEM、EDS 、XRD、FTIR及 XPS对涂层的形貌、成分分布和物相结构进行分析,利用电化学极化和交流阻抗及析氢腐蚀实验对涂层在模拟人体体液(Hank's)中的耐蚀性能进行研究。探讨了氨基酸添加剂在AZ31镁合金表面诱导Ca-P涂层成膜的作用机制。Ca-P、Ca-PPhe、Ca-PMet和Ca-PAsn涂层的厚度分别为(3.47 ± 0.47)、(6.06 ± 0.77)、(7.63 ± 1.70)和(8.23 ± 1.37) μm。涂层主要组成物相为CaHPO4及Ca10(PO4)6(OH)2 (HA)。电化学和析氢实验结果表明,氨基酸提高了Ca-P涂层耐蚀性能。这主要归因于氨基酸分子的缓蚀作用,并在AZ31镁合金表面发生化学吸附。氨基酸中的氨基吸附主要是通过N原子的孤对电子与镁合金表面耦合来实现的;羧基是通过羰基中的O原子与Mg2+结合。此外,氨基酸中的杂原子亦能与镁合金的空位分子轨道共享其孤对电子。最后,提出了氨基酸诱导Ca-P涂层的成膜机理。

关键词: AZ31镁合金 ; 涂层 ; 氨基酸 ; 吸附 ; 耐蚀性能

Abstract

Ca-P coating not only enhances the corrosion resistance of biodegradable magnesium alloys but also contributes to the formation of new bones and promotes bone integration around implants. However, the Ca-P coatings may have defects like porosity, low adhesion, and coarse grains, which lead to prefailure in the early stage and then the coatings cannot meet the requirements of long-term clinical service. Amino acids can induce the formation of calcium-bearing phosphates on biodegradable magnesium alloy. To clarify the influence of amino acid groups on film formation, Phenylalanine (Phe), Methionine (Met), and Asparagine (Asn) were used to regulate the degradation rate of magnesium alloy. Three amino acid-induced Ca-P (Ca-PPhe, Ca-PMet, and Ca-PAsn) coatings were prepared on AZ31 magnesium alloy via a constant temperature water bath method at a temperature of 60oC. Additionally, the morphology of the coatings, composition distributions, and phase structures were observed and analyzed via SEM, EDS, XRD, FTIR, and XPS. The corrosion resistance of the coating in simulated body fluid (Hank's solution) was investigated through electrochemical polarization, AC impedance, and hydrogen evolution tests. The formation mechanisms of amino acid additive-induced Ca-P (Ca-PPhe, Ca-PMet, and Ca-PAsn) coatings on AZ31 magnesium alloy were probed. Results showed that the thicknesses of Ca-P, Ca-PPhe, Ca-PMet, and Ca-PAsn coatings were about (3.47 ± 0.47), (6.06 ± 0.77), (7.63 ± 1.70), and (8.23 ± 1.37) μm, respectively. The main constituents of the amino acid-induced Ca-P coatings were CaHPO4 and Ca10(PO4)6(OH)2 (HA). The results of electrochemical polarization curves, EIS, and hydrogen evolution tests demonstrated that the addition of amino acids enhanced the corrosion resistance of the Ca-P coatings, which was ascribed to the inhibition and adsorption of amino acid molecules on AZ31 magnesium alloy. The adsorption of the amino group was mainly achieved through the coupling of the lone pair electrons of nitrogen atoms with the surface, whereas the carboxyl group combined with Mg2+ via their oxygen atoms. Additionally, heteroatoms in amino acids could share their lone pair electrons with the vacant molecular orbitals of the magnesium alloy. A formation mechanism of amino acid-induced Ca-P coating was proposed.

Keywords: AZ31 magnesium alloy ; coating ; amino acid ; adsorption ; corrosion resistance

PDF (5915KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

王雪梅, 殷正正, 于晓彤, 邹玉红, 曾荣昌. AZ31镁合金表面苯丙氨酸、甲硫氨酸和天冬酰胺诱导Ca-P涂层耐蚀性能比较. 金属学报[J], 2021, 57(10): 1258-1271 DOI:10.11900/0412.1961.2021.00058

WANG Xuemei, YIN Zhengzheng, YU Xiaotong, ZOU Yuhong, ZENG Rongchang. Comparison of Corrosion Resistance of Phenylalanine, Methionine, and Asparagine-Induced Ca-P Coatings on AZ31 Magnesium Alloys. Acta Metallurgica Sinica[J], 2021, 57(10): 1258-1271 DOI:10.11900/0412.1961.2021.00058

具备低密度以及生物可降解性的Mg及镁合金在结构材料的轻量化和医用植入材料的自降解上具有广阔的发展前景[1]。然而,Mg及其合金因其很负的电极电位和高的化学活性而极易发生腐蚀,这在很大程度上限制了其应用。此外,第二相和杂质的存在也会加速镁合金的腐蚀;在模拟体液或者机体内环境中,镁合金特别容易吸附溶液中的Cl- [2~4]产生可溶性氯化物而被腐蚀。镁合金过快的降解速率导致镁合金在服役期内过早失去机械强度而提前失效,无法满足或匹配骨组织愈合所需的时间。同时,镁合金在腐蚀过程中通常会产生大量H2,并使其局部碱化[5],进而影响植入体周围细胞的生长,甚至可能会引起碱中毒现象。因此,将缓蚀剂与化学转化膜相结合,通过其与金属离子的吸附性或络合性对转化膜进行诱导,进而控制和降低镁合金的降解速率是非常有必要的。

目前,对镁合金进行表面处理的工艺种类繁多[6],如微弧氧化[7]、有机涂层[8~10]、化学转化处理[11,12]等。微弧氧化制备的涂层一方面可以显著地降低镁合金的初期腐蚀速率[13],另一方面可以明显地提高涂层和基体之间的结合力。但是,微弧氧化膜表面的多孔结构却使得腐蚀性离子较容易进入涂层内部,反而在后期加速了镁合金的腐蚀[14]。有机涂层在提高镁合金耐蚀性和赋予镁合金功能化方面效果显著[15]。但其与基体的结合力较差,所以在长时间的植入环境中势必面临严峻的挑战[16]。化学转化膜具有操作简单、涂层均匀、成本低等优点,适用于工业化生产。

通常,缓蚀剂大多对环境有害,如铬酸盐、亚硝酸盐和芳香杂环化合物等。因此,使用新型环保材料替代这些有害材料是大势所趋。在腐蚀防护领域中,氨基酸作为一种可生物降解的环境友好型的绿色缓蚀剂已经得到广泛关注。氨基酸通过与合金表面进行化学吸附[17]达到抑制腐蚀的目的,其中氨基基团中被质子化的N原子带有正电荷[18],带有正电荷的N原子依靠溶液中OH-或Cl-作为中间桥梁吸附到金属表面进而抑制腐蚀的发生[19,20]

张军等[21]采用静态失重和分子模拟相结合的方法研究了半胱氨酸、缬氨酸和丙氨酸3种氨基酸的缓蚀效果,结果表明:随着缓蚀剂分子反应活性的增加,缓蚀剂分子在金属表面的吸附强度增加,缓蚀效果增强,3种缓蚀剂的缓蚀效率顺序为半胱氨酸>缬氨酸>丙氨酸。El-Hafez等[22]通过电化学阻抗法及极化曲线法研究了半胱氨酸、N-乙酰半胱氨酸和甲硫氨酸在NaCl溶液中对Cu-Ni合金的腐蚀抑制情况,认为氨基酸的腐蚀抑制作用是由于其在合金表面的吸附。Zhao等[23]在0.5 mol/L NaCl溶液中研究了含硫氨基酸(L-半胱氨酸(CYS)和L-蛋氨酸(MET))作为环境友好型自组装膜(SAMs)对316L钢的缓蚀效果,结果表明,CYS和MET分子的自组装膜可以作为混合型缓蚀剂,保护316L钢在NaCl溶液中免受侵蚀性离子的侵蚀,且随着氨基酸(CYS或MET)浓度的增加,抑制作用不断增强。

Wang等[24]提出了氨基酸对抑制纯Mg在磷酸盐缓冲溶液中的降解有重要作用,发现氨基酸分子与Mg2+和HPO42-结合,形成Mg(OH)2和磷酸盐类腐蚀产物,并且氨基酸的加入导致了自腐蚀电位的提高和自腐蚀电流密度的降低,从而证实了氨基酸的存在提高了纯Mg在磷酸盐缓冲溶液(PBS)中的耐腐蚀性。Fan等[25]将L-半胱氨酸添加到Ca-P转化溶液中,在AZ31镁合金表面制备了Ca-PL-CYS涂层。该涂层比无氨基酸的Ca-P涂层具有更致密的微观形态,并且其涂层厚度比Ca-P涂层增加了大约2倍。此外,相对于镁合金基体,Ca-PL-CYS涂层的极化电阻(Rp)增加了大约16倍。这归因于极性基团—COOH和—SH与溶液中的Ca2+和Mg2+结合,促进了钙磷化合物的成核。Mei等[26]研究了53种生物小分子单独和联合对纯Mg和Mg-0.8Ca腐蚀的影响。研究表明,与在模拟体液(SBF)中的腐蚀速率相比,纯Mg在NaCl溶液中的降解速率要快10倍以上。Mg-0.8Ca在NaCl溶液中的腐蚀速率是在SBF溶液中腐蚀速率的2倍。在细胞培养基溶液(MEM)中,氨基酸、维生素、葡萄糖的存在导致了腐蚀速率的轻微加速。纯Mg和Mg-0.8Ca 在简单NaCl溶液中的腐蚀速率差异很大,而在SBF和MEM电解质中的腐蚀速率相同。这充分说明溶液中存在的Ca2+、Mg2+、HPO42-和HCO3-离子促进了镁合金表面羟基磷灰石化合物的形成,有效降低了镁合金的腐蚀速率。而低浓度的有机化合物(氨基酸、维生素、葡萄糖)的存在对镁合金的体外腐蚀影响不大。

本工作通过氨基酸诱导镁合金表面Ca-P涂层,研究氨基酸极性官能团氨基、羧基的作用和苯丙氨酸中苯环、甲硫氨酸中硫键、天冬酰胺中的酰胺键的吸附效果。

1 实验方法

1.1 涂层制备

挤压态AZ31镁合金板材的主要化学成分(质量分数,%)为:Al 3.19,Zn 0.81,Mn 0.334,Si 0.02,Fe 0.005,Cu 0.05,Ca 0.04,Be 0.1,Mg余量。样品切割为20 mm × 20 mm × 5 mm的矩形平行六面体。样品用SiC水磨砂纸打磨到2500号磨至表面无明显划痕。先使用蒸馏水冲洗样品表面杂质、再用无水乙醇冲洗样品表面油污,并采用热风干燥后真空保存。

选定下列3种氨基酸:苯丙氨酸(Phenylalanine,Phe)、甲硫氨酸(Methionine,Met)和天冬酰胺(Asparagine,Asn)。

Ca-P涂层制备:将0.25 mol/L的CaCl2和KH2PO4通过超声搅拌溶解在去离子水中,随后,将打磨好的样品浸入上述混合溶液中在60℃恒温水浴搅拌处理30 min,取出样品后,用蒸馏水冲洗,并用热风干燥,最终得到Ca-P涂层。

氨基酸Ca-P涂层制备:将0.25 mol/L的CaCl2和KH2PO4通过超声搅拌溶解在去离子水中,并分别添加12 mmol/L的苯丙氨酸/甲硫氨酸/天冬酰胺,随后,将打磨好的样品浸入混合溶液中在60℃恒温水浴搅拌处理30 min,取出样品后用蒸馏水冲洗,并用热风干燥,最终得到3种氨基酸Ca-P涂层:苯丙氨酸Ca-P (Ca-PPhe)涂层、甲硫氨酸Ca-P (Ca-PMet)涂层和天冬酰胺Ca-P (Ca-PAsn)涂层。其制备流程见图1

图1

图1   AZ31镁合金表面Ca-P涂层和3种氨基酸(苯丙氨酸、甲硫氨酸和天冬酰胺)诱导Ca-P涂层(Ca-PPhe、Ca-PMet和Ca-PAsn)制备流程图

Fig.1   Preparation diagram of Ca-P coating and its amino acids (Phenylalanine (Phe), Methionine (Met), and Asparagine (Asn)) modified coatings (Ca-PPhe, Ca-PMet,and Ca-PAsn, respectively) on AZ31 Mg alloy


1.2 腐蚀表征

使用PAR Model 2273电化学工作站获得样品的电化学阻抗谱(EIS)和动电位极化(PDP)曲线,以评估三电极装置(以暴露面积为1 cm2的样品为工作电极,饱和甘汞(SCE)电极为参比电极,Pt电极为对电极)对样品的腐蚀行为。实验在室温下Hank's溶液中进行。首先,在600 s内建立了稳定的开路电位;在扰动电位为10 mVSCE、频率范围为100 kHz~0.01 Hz、浸泡时间为600 s的短延迟后进行EIS分析,EIS数据用ZSimpWin软件拟合;以2 mV/s的扫描速率记录极化曲线,用Versatudio 和Origin Pro 9.1对电化学参数(腐蚀电位(Ecorr)、腐蚀电流密度(icorr)和Tafel斜率(βaβc))进行拟合。Rp使用Stern-Geary方程计算:

Rp=βaβc/[2.303icorr(βa+βc)]
(1)

析氢速率的测量方法:将样品置于500 mL装有Hank's溶液的烧杯中,通过倒置的漏斗连接酸式滴定管,整个实验在(37.0 ± 0.5)℃的水浴锅中进行,并通过排水集气法在表面完全暴露的情况下间歇地测量滴定管中的水位。通过单位时间单位面积释放H2的体积来反映腐蚀反应的速率及进程。

1.3 表面分析与表征

利用Nova Nano SEM 450扫描电子显微镜(SEM)及其附带的能谱仪(EDS)观察和分析样品的微观表面形貌和元素组成。通过扫描样品的横截面,确定涂层的厚度和元素分布。在SEM测试之前,样品表面经过真空镀金的导电处理。

采用Rigaku D/MAX-2500 X射线衍射仪(XRD)对涂层进行结构分析,采用CuKα靶(波长λ = 0.154 nm),其扫描范围为5°~80°,扫描速率为8°/min。通过Nicolet 380 Fourier红外光谱(FTIR)表征涂层的官能团以及化学键,实验参数为:背景材料KBr,测量范围4000~400 cm-1

使用ESCALAB250Xi X射线光电子能谱(XPS)分析涂层所含的元素,进而研究氨基酸的作用。主要实验参数:X射线源为单色化Al靶,样品分析区域700 μm × 300 μm,信息采样深度无机材料< 5 nm。X射线工作功率为150 W,实验数据需要以C为校准峰进行荷电校正,C单质的标准峰为284.8 eV。校正后的数据用XPS PEAK 4.1软件进行分峰拟合。

2 实验结果与讨论

2.1 涂层表面

AZ31镁合金表面Ca-P涂层和Ca-PPhe/Met/Asn涂层微观形貌的SEM像如图2所示。从图2a~c可以看出,Ca-P涂层表面分布着致密的荷花瓣状晶体,但也存在许多空洞或孔隙[27]。Ca-PPhe涂层(图2d~f)相较于Ca-P涂层的表面稍微致密,分布着少量不均匀的晶粒团簇,同时涂层表面部分晶粒呈现出规则的放射状。Ca-PMet涂层(图2g~i)的微观形貌明显不同于Ca-P涂层,涂层表面非常致密,呈现出规则的径向晶粒,类似荷叶状。Ca-PAsn涂层(图2j~l)表面完全覆盖更为致密的荷叶状晶体。

图2

图2   AZ31镁合金表面Ca-P涂层和3种氨基酸诱导Ca-P涂层的SEM像

Fig.2   SEM images of Ca-P coating (a-c), Ca-PPhe coating (d-f), Ca-PMet coating (g-i), and Ca-PAsn coating (j-l) on AZ31 magnesium alloy surface


4种涂层表面的元素组成情况如表1所示。4种涂层表面均检测到Ca、P、C、O和Mg元素。同时,N元素的存在表明氨基酸参与了Ca-P涂层的形成过程。此外,Ca-P、Ca-PPhe、Ca-PMet和Ca-PAsn涂层的Ca和P的含量是递增的。

表1   图2中点1~12的EDS分析结果 (atomic fraction / %)

Table 1  EDS analysis results of points 1-12 in Fig.2

PointCNOMgCaP
14.021.4838.7132.7114.408.68
23.940.8148.0528.8311.027.35
34.320.7463.3512.3210.778.50
43.570.8360.569.7914.2611.00
53.300.4860.4211.1714.2810.35
63.181.2363.745.4313.9612.45
72.841.5058.951.5218.0417.15
83.351.5244.312.9923.7324.00
93.111.0661.401.6816.6816.07
103.261.8638.993.3924.8727.63
113.061.3852.890.0620.6221.98
124.092.2139.936.0123.7424.02

新窗口打开| 下载CSV


AZ31镁合金表面Ca-P涂层和氨基酸诱导Ca-P涂层的截面图和元素分布如图3所示。Ca-P、Ca-PPhe、Ca-PMet和Ca-PAsn涂层的厚度分别约为(3.47 ± 0.47)、(6.06 ± 0.77)、(7.63 ± 1.70)和(8.23 ± 1.37) μm。结果表明,相较于Ca-P涂层及其他氨基酸诱导的Ca-P涂层,天冬酰胺明显地增加了Ca-P涂层的厚度和致密性。

图 3

图 3   AZ31镁合金表面Ca-P 涂层和3种氨基酸诱导Ca-P涂层截面形貌的SEM像和元素分布

Fig.3   Cross-sectional SEM images and corresponding Ca and P mapping images of Ca-P coating (a), Ca-PPhe coating (b), Ca-PMet coating (c), and Ca-PAsn coating (d) on AZ31 magnesium alloy surface


为了了解氨基酸是否参与Ca-P涂层的形成,对3种氨基酸诱导的Ca-P涂层进行了XPS测试。图4a、d和g显示了Ca-PPhe/Met/Asn涂层的XPS测量宽谱。可以看出,3种涂层所含元素并无差异。C、N、O、Mg、Ca和P元素存在于Ca-PPhe/Met/Asn涂层表面上,表明氨基酸参与了Ca-P涂层成膜反应。根据C1s光谱(图4b、e和h),Ca-PPhe/Met/Asn涂层中的C元素均来自氨基酸,其中结合能分别在284.8、285.8、287.6和288.8 eV,分别对应于氨基酸中的C—C键、C—N键、C—O键和C=O键[25]。根据N1s光谱(图4c、f和i),N元素也均来自于氨基酸,其中C—N键和N—H键的结合能分别是399.7和400.4 eV。因此,可以证明氨基酸参与了Ca-P涂层的成膜反应。

图4

图4   3种氨基酸诱导Ca-P涂层的XPS谱宽谱和精细谱

(b, e, h) C1s (c, f, i) N1s

Fig.4   XPS survey plots (a, d, g) and high-resolution spectra (b, c, e, f, h, i) of Ca-PPhe coating (a-c), Ca-PMet coating (d-f), and Ca-PAsn coating (g-i)


图5为AZ31镁合金表面Ca-P涂层和3种氨基酸诱导Ca-P涂层的FTIR。如图所示,4种样品的FTIR曲线在峰的数目和位置上没有明显的差异,在3166~3540 cm-1处出现的吸收峰,代表O—H键的伸缩振动吸收峰。在870 cm-1处观察到的谱带归因于H2O的弯曲振动吸收峰。此外,N—H和C—N的特征峰分别出现在波长1510和1408 cm-1处,表明氨基酸诱导的Ca-P涂层中可能成功引入了苯丙氨酸、甲硫氨酸和天冬酰胺。同时,图中出现了Ca-P涂层的一般特征吸收峰。H2PO4-基团的特征峰出现在2371 cm-1,PO43-基团可在波长500~1200 cm-1范围内的峰中找到[28]。PO43-基团的伸缩振动位于1135、1063和986 cm-1处,576和527 cm-1处则为弯曲振动吸收峰。873 cm-1处是CO32-的峰,是空气中的CO2溶于水形成的碳化的羟基磷灰石(HA)。通过分析可知,涂层中主要含有的官能团为H2PO4-和PO43-基团,由此证明了Ca-P涂层是由Ca3(PO)4或CaHPO4类物质组成。

图5

图5   AZ31镁合金表面Ca-P涂层和3种氨基酸诱导Ca-P涂层的Fourier红外光谱(FTIR)

Fig.5   FTIR of Ca-P coating (a), Ca-PPhe coating (b), Ca-PMet coating (c), and Ca-PAsn coating (d) on AZ31 magnesium alloy surface


AZ31镁合金及其Ca-P涂层和3种氨基酸诱导Ca-P涂层的XRD谱(图6)出现了CaHPO4和HA的衍射峰。这表明涂层中存在2种钙磷产物。此外,Ca-PAsn涂层(图6e)中CaHPO4的峰强度是明显高于其他样品的。这也直接证明了天冬酰胺在促进钙磷产物生成方面具有最佳的作用。XRD谱结果与FTIR结果相吻合。

图6

图6   AZ31镁合金及其Ca-P涂层和3种氨基酸诱导Ca-P涂层的XRD谱

Fig.6   XRD spectra of AZ31 Mg alloy (a), Ca-P coating (b), Ca-PPhe coating (c), Ca-PMet coating (d), and Ca-PAsn coating (e) (HA—Ca10(PO4)6(OH)2)


2.2 涂层的耐蚀性能

AZ31镁合金及其Ca-P涂层和3种氨基酸诱导Ca-P涂层的极化曲线如图7所示。用Tafel曲线外推法得到的Ecorricorr的拟合结果见表2。事实上,Ca-PPhe/Met/Asn涂层的icorr均比AZ31镁合金的icorr (1.73 × 10-5 A/cm2)小一个数量级,说明添加氨基酸使Ca-P涂层的耐蚀性能有明显提高。5种样品的icorr按以下顺序排列:AZ31镁合金(1.73 × 10-5 A/cm2) > Ca-P涂层(6.54 × 10-6 A/cm2) > Ca-PPhe涂层(3.80 × 10-6 A/cm2) > Ca-PMet涂层(2.99 × 10-6 A/cm2) > Ca-PAsn涂层(1.36 × 10-6 A/cm2)。从腐蚀动力学角度来说,Ca-PAsn涂层具有最佳的耐蚀性能。此外,Ca-PAsn涂层的破钝电位(Eb)比Ca-PPhe涂层和Ca-PMet涂层高。这进一步说明,Ca-PAsn涂层对镁合金具有更好的保护作用。通常来说,Rp的倒数与镁合金的腐蚀速率成正比[29]。5种样品的Rp可以按以下顺序排列:AZ31镁合金(2.14 × 106 Ω·cm2) < Ca-P涂层(8.06 × 106 Ω·cm2) < Ca-PPhe涂层(18.29 × 106 Ω·cm2) < Ca-PMet涂层(19.89 × 106 Ω·cm2) < Ca-PAsn涂层(20.16 × 106 Ω·cm2),从而进一步证明了Ca-PAsn涂层具有最佳的耐蚀性。

图 7

图 7   AZ31镁合金及其Ca-P涂层和3种氨基酸诱导Ca-P涂层的极化曲线

Fig.7   Polarization curves of AZ31Mg alloy, Ca-P coating, Ca-PPhe coating, Ca-PMet coating, and Ca-PAsn coating (Eb—broken shield potential)


表2   AZ31 镁合金及其Ca-P 涂层和3种氨基酸诱导Ca-P涂层的Tafel极化曲线拟合数据

Table 2  Tafel analysis results of AZ31Mg alloy, Ca-P coating, Ca-PPhe coating, Ca-PMet coating, and Ca-PAsn coating

SampleEcorr / mVSCEicorr / (10-6 A·cm-2)βa / (mV·dec-1)βc / (mV·dec-1)Rp / (106 Ω·cm2)
AZ31-1481.4717.30258.19-127.672.14
Ca-P-1402.116.54257.40-230.008.06
Ca-PPhe-1435.363.80387.58-271.9818.29
Ca-PMet-1423.592.99315.89-241.7419.89
Ca-PAsn-1416.231.36145.42-111.5720.16

Note:Ecorr—corrosion potential, icorr—corrosion current density, βa—anodic Tafel slope, βc—cathodic Tafel slope, Rp—polarization resistance

新窗口打开| 下载CSV


通过对AZ31镁合金基体、Ca-P涂层及3种氨基酸诱导Ca-P涂层样品在Hank's溶液中进行EIS测试,进一步研究Ca-PPhe、Ca-PMet和Ca-PAsn涂层的耐蚀性能,如图8所示。在等效电路图(图9)中,Rs表示溶液电阻;CPE1和CPE2表示常相位角元件;Rct表示电荷转移电阻;RLL分别表示电感电阻和电感;R1表示涂层电阻。从图8a可见,AZ31镁合金和Ca-P涂层的Nyquist曲线由中高频电容环和低频电感环组成,其中中高频电容环通常归因于电荷转移(Rct)[30,31],一般来说,电荷转移电阻越大样品的溶解速率越慢,即Rct越高,耐蚀性能越好[32];而低频感应环(RLL)则与α-Mg的溶解[33,34]和点蚀的发生有关。从EIS拟合数据(表3)中可以看出,AZ31基体和Ca-P涂层的RL分别为231.5和6856.0 Ω·cm2,表明与AZ31基体相比Ca-P涂层的点蚀程度更严重,可能是由于Ca-P涂层结构疏松多孔,导致腐蚀介质通过孔隙深入到基体,从而发生腐蚀。而3种氨基酸诱导的Ca-P涂层的低频区没有感抗的出现,进一步说明氨基酸的加入对Ca-P涂层点蚀的发生起一定的阻碍作用。同时,Rct按以下顺序从小到大排列:AZ31镁合金(578.5 Ω·cm2) < Ca-P涂层(593.8 Ω·cm2) < Ca-PPhe涂层(7266.0 Ω·cm2) < Ca-PMet涂层(7465.0 Ω·cm2) < Ca-PAsn涂层(8552.0 Ω·cm2),这说明Ca-PAsn涂层具有最佳的耐蚀性。此外,从图8a可以得出,Ca-PAsn涂层的曲率半径最大,也表明其具有最佳的耐蚀性能[35]。除此之外,在图8b中Ca-PAsn涂层的阻抗模量(|Z|0.01Hz)是最大的,也表明Ca-PAsn涂层的耐蚀性能最佳[20]

图8

图8   AZ31 镁合金及其Ca-P涂层和3种氨基酸诱导Ca-P涂层的EIS分析

Fig.8   Nyquist (a) and Bode (b) curves of AZ31 Mg alloy, Ca-P coating, Ca-PPhe coating, Ca-PMet coating, and Ca-PAsn coating (Zim—imaginary part of impedance, Zre—real part of impedance, |Z|—impedance modulus)


图9

图9   AZ31镁合金及其Ca-P涂层和3种氨基酸诱导Ca-P涂层EIS的等效电路

Fig.9   Equivalent circuits of AZ31 Mg alloy (a), Ca-P coating (b), and Ca-PPhe/Met/Asn coating (c) (Rs—solution resistance, CPE—constant phase element, Rct—charge transfer resistance, L—equivalent inductance, RL—inductive resistance, R1—coating resistance)


表3   AZ31镁合金、Ca-P涂层和3种氨基酸诱导Ca-P涂层的EIS拟合数据

Table 3  EIS analysis results of AZ31 Mg alloy, Ca-P coating, Ca-PPhe coating, Ca-PMet coating, and Ca-PAsn coating

SampleRsCPE1n1R1CPE2n2RctLRL
Ω·cm210-5 Ω-1·sn1·cm-2kΩ·cm210-5 Ω-1·sn2·cm-2Ω·cm2H·cm2Ω·cm2
AZ3185.881.2780.9056---578.5439.7231.5
Ca-P57.250.1360.6946-2.6160.6438593.83.76856.0
Ca-PPhe70.000.8750.6515289.61.5820.77577266.0--
Ca-PMet84.641.8590.6809226.31.6930.82977465.0--
Ca-PAsn80.930.7420.6782157.81.8730.81448552.0--

Note:n1 and n2—dispersion indexes

新窗口打开| 下载CSV


图10为AZ31镁合金、Ca-P涂层和3种氨基酸诱导Ca-P涂层的析氢测试结果。在浸泡前期,由于样品表面氧化膜的形成或表面涂层的存在[36],样品的析氢速率急速下降。经过24 h的浸泡后,析氢速率呈现出逐渐上升的状态,这是由于Ca-P涂层不致密,溶液中腐蚀性介质通过孔隙到达镁合金基体,进而导致腐蚀加快。经过80 h左右的浸泡,析氢速率逐渐下降并趋于平稳,推测可能是磷酸盐沉淀类腐蚀产物的生成对样品产生二次保护。析氢测试结果显示,Ca-P涂层在模拟人体体液(Hank's)中的长期耐蚀性能优于AZ31基体,而氨基酸诱导Ca-P涂层的耐蚀性优于Ca-P涂层,其中Ca-PAsn涂层的析氢速率最低。析氢测试结果与电化学极化和EIS测试结果相吻合。因此,3种氨基酸诱导的Ca-P涂层中Ca-PAsn涂层具有最佳的耐蚀性。

图10

图10   AZ31镁合金、Ca-P涂层和3种氨基酸诱导Ca-P涂层的析氢曲线

Fig.10   Hydrogen evolution rate (HER) curves of AZ31Mg alloy, Ca-P coating, Ca-PPhe coating, Ca-PMet coating, and Ca-PAsn coating


2.3 涂层的腐蚀机理

图11为样品经过160 h浸泡后的宏观形貌和SEM像。可以看出,对于AZ31基体(图11a~c),样品表面出现了明显的腐蚀坑及较多的裂纹和腐蚀产物。EDS分析(表4)表明,AZ31基体中Mg元素的含量较高,而Ca和P元素含量较低,进一步说明AZ31基体遭受到了严重的腐蚀。Ca-P涂层(图11d~f)经过浸泡后,涂层基本遭到破坏,产生了较为明显的裂纹。Ca-PPhe涂层(图11g~i)经过浸泡实验后,样品四周出现明显的腐蚀坑,并且产生较深的腐蚀裂纹。Ca-PMet涂层(图11j~l)可以观察到一些微小的裂纹和腐蚀产物,表明涂层遭受了一定的腐蚀。而Ca-PAsn涂层(图11m~o)浸泡160 h后涂层结构基本保持完整,没有出现较为明显的腐蚀现象。从图中可以看出,样品表面占主导地位的元素有:C、O、N、Mg、Ca和P。此外,AZ31样品中存在Ca和P是由于Hank's溶液中含有Ca和P元素。从3种氨基酸诱导的Ca-P涂层浸泡160 h后的元素分布来看,附着在样品表面的腐蚀产物中不仅有Mg(OH)2还有钙磷产物。对比3种氨基酸诱导的Ca-P涂层,Ca-PAsn涂层中的Ca和P元素依然保持着很高的含量,Mg元素的含量也很低。这可以推测出经过浸泡实验后样品表面的涂层保持着良好的完整性。

图11

图11   AZ31镁合金、Ca-P涂层和3种氨基酸诱导Ca-P涂层浸泡160 h后的宏观形貌和SEM像

Fig.11   Digital camera photographs (a, d, g, j, m) and SEM images (b, c, e, f, h, i, k, l, n, o) after 160 h immersion for AZ31 Mg alloy (a-c), Ca-P coating (d-f), Ca-PPhe coating (g-i), Ca-PMet coating (j-l), and Ca-PAsn coating (m-o)


表4   图11中点1~15的EDS分析结果 (atomic fraction / %)

Table 4  EDS analysis results of points 1-15 in Fig.11

PointCNOMgCaP
13.981.4563.0714.168.728.61
26.021.0962.6015.067.627.60
35.790.9370.3410.795.206.95
48.201.9168.695.627.707.88
55.751.4570.741.339.0411.68
65.291.3265.103.5115.998.79
73.421.3161.385.9913.2014.69
811.404.9261.093.5210.208.87
912.385.0558.082.5111.3610.62
106.451.8663.703.4613.9610.57
116.961.9770.642.6910.557.19
125.611.8762.783.3314.2212.18
135.361.6560.923.7015.8312.97
144.921.7360.673.9316.6012.15
154.841.4661.372.4214.8415.07

新窗口打开| 下载CSV


图12为样品经过160 h浸泡实验后的FTIR。对比浸泡前的FTIR (图5),浸泡后的样品变化主要表现为氨基酸的官能团(N—H、C—N)的消失。在3384 cm-1处的峰位来源于O—H的拉伸振动[37],其对应于化合物中的结晶水。2371 cm-1处代表H2PO43-的吸收峰[34]。在1652 cm-1处的吸收峰来自于H2O分子基团的弯曲振动。在1497 cm-1处属于CO32-的弯曲振动,CO32-的出现可能是由于OH-与空气中的CO2反应产生的[38,39]。在1046和870 cm-1位置出现PO43-的拉伸振动,564 cm-1处出现了PO43-的弯曲振动[40]。这表明浸泡后涂层的主要成分还是钙磷产物,涂层中依然保留了HA的官能团(O—H、PO43-),此外,氨基酸诱导的Ca-P涂层析氢速率低于AZ31镁合金基体和Ca-P涂层。由此可知,浸泡后样品的涂层并没有完全被破坏,这些都意味着氨基酸的加入明显提高了Ca-P涂层的耐蚀性能。这与浸泡后样品形貌分析的结论是一致的。

图12

图12   AZ31镁合金及其Ca-P涂层和3种氨基酸诱导Ca-P涂层浸泡160 h后的FTIR

Fig.12   FTIR of AZ31 Mg alloy (a), Ca-P coating (b), Ca-PPhe coating (c), Ca-PMet coating (d), and Ca-PAsn coating (e) immersed in Hank's solution after 160 h


图13为AZ31镁合金及其Ca-P涂层和3种氨基酸诱导Ca-P涂层经过160 h浸泡后的XRD谱。与浸泡之前的XRD谱(图6)相比,随着浸泡时间的延长,涂层的变化主要表现为CaHPO4峰消失,HA峰减少。这说明Ca-P涂层可能遭到部分破坏。

图13

图13   AZ31镁合金及其Ca-P涂层和3种氨基酸诱导Ca-P涂层浸泡160 h后的XRD谱

Fig.13   XRD spectra of AZ31 Mg alloy (a), Ca-P coating (b), Ca-PPhe coating (c), Ca-PMet coating (d), and Ca-PAsn coating (e) immersed in Hank's solution after 160 h


在模拟人体体液(Hank's)中含有Cl-、Ca2+和H2PO4-等离子,一方面,在浸泡腐蚀的过程中,Ca-P涂层会逐渐溶解。然后,溶液中H2O分子和Cl-会通过Ca-P涂层表面的微裂纹进入AZ31镁合金基体,发生电化学腐蚀,产生腐蚀产物Mg(OH)2并释放H2,使涂层发生损坏。另一方面,在弱碱性的Hank's溶液中,H2PO4-结合OH-形成HPO42-和PO43-,进而溶液中的Ca2+和PO43-发生反应,生成的少量HA会不断沉积到腐蚀之后的涂层的表面,这个过程所产生的HA又会对基体产生一定的保护作用。腐蚀过程中可能发生的反应如下所示:

H2OH++OH-
(2)
H2PO4-+OH-HPO42-+H2O
(3)
HPO42-+OH-PO43-+H2O
(4)
10Ca2++6HPO42-+2H2O
Ca10(PO4)6(OH)2+8H+
(5)
10Ca2++6HPO42-+2OH-
Ca10(PO4)6(OH)2+6H+
(6)

3 分析与讨论

3.1 氨基酸的吸附作用

耐蚀性能问题是镁合金应用过程中的一个关键性问题,可以通过添加缓蚀剂来解决。添加缓蚀剂作为一种常用的腐蚀防护手段,由于其成本低、易于操作而得到广泛应用。但缓蚀剂的溶解可能会对人类和环境产生损害,因此,在保护镁合金表面不受腐蚀的同时,应使用高效、环保、可降解的绿色型缓蚀剂,来起到阻挡腐蚀物质进入的作用。

氨基酸诱导Ca-P涂层晶粒呈现出均匀的径向晶粒,表明氨基酸的加入可以降低气孔率,减小晶粒粗大引起的涂层不均匀性。电化学结果表明,氨基酸诱导Ca-P涂层的腐蚀电流密度比AZ31镁合金基体降低了一个数量级,其中3种氨基酸的吸附效果顺序为天冬酰胺>甲硫氨酸>苯丙氨酸。经过长时间的浸泡实验,含有氨基酸的Ca-P涂层表面腐蚀损伤较小,这也证明了它们有效提高了镁合金的耐蚀性能。3种氨基酸中的极性官能团优先吸附在镁合金表面,阻止溶液中腐蚀性离子的入侵,同时,羧基与溶液中游离Ca2+和Mg2+发生反应,溶液中的Ca2+、HPO42-及PO43-在分子识别作用下,最终诱导成膜。

基于上述事实,氨基酸及其相关化合物对镁合金的腐蚀具有很好的抑制效果。在各种缓蚀剂中氨基酸被认为是许多金属的绿色缓蚀剂,其与大多数有机缓蚀剂类似,这些化合物的抑制效果归因于氨基酸分子通过“直接”或“间接”吸附在镁合金表面而积聚,从而减少镁合金与溶液中腐蚀介质的接触。氨基酸吸附能力的大小受其表面电荷、化学性质和官能团的影响。通常,氨基酸吸附方式分为2种:(1) 氨基酸的官能团可以通过化学吸附机制吸附在镁合金表面;(2) 带电的官能团可以与带电镁合金表面或带电粒子发生静电相互作用。由此可知,氨基酸和镁合金表面之间的吸附效果[41,42]主要取决于官能团。氨基酸含有2个化学性质相反的官能团,既含有具有酸性的羧基,又含有具有碱性的氨基,因而,氨基酸是两性电解质,它能通过氨基的N原子[43]和羧基的O原子[44]与金属的d轨道配合,增强吸附效果。此外,氨基酸的吸附作用也受含孤对电子的杂原子等因素的影响,杂原子可以与镁合金基体的空位分子轨道共享其孤对电子[45],从而具有较好的吸附效果。

3.2 成膜机理

AZ31镁合金中存在的α-Mg相优先与H2O分子发生反应,产生Mg2+、OH-和H2

Mg+2H2OMg2++2OH-+H2
(7)

与此同时溶液中的H2PO4-解离为HPO42-,HPO42-进一步解离为PO43-

H2PO4-H++HPO42-
(8)
HPO42-PO43-+H+
(9)

苯丙氨酸含有非极性苯环、极性基团氨基和羧基,极性基团能吸附在镁合金表面成膜;亲水的羧基带有较多的负电荷,易与溶液中的Ca2+和Mg2+发生螯合反应形成稳定致密的化学吸附保护膜;憎水的苯环向上形成定向排列,使得腐蚀介质与镁合金表面隔开,从而抑制腐蚀的发生。如图14a和b所示。

图14

图14   Ca-PPhe、Ca-PMet和Ca-PAsn涂层的形成机理示意图

Fig.14   Schematics of the formation mechanisms of Ca-PPhe (a, b), Ca-PMet (c, d), and Ca-PAsn (e, f) coatings


甲硫氨酸可以依靠其特有的S活性中心吸附到镁合金表面起到保护基体的作用。溶液中的Ca2+与镁合金表面吸附的羧基形成保护性络合物,进一步抑制镁合金基体的腐蚀。如图14c和d所示。

与其他氨基酸相比,天冬酰胺则有更多的N原子吸附在镁合金表面来阻止腐蚀的发生,羧基与溶液中游离Ca2+和Mg2+发生反应。同时,溶液中的HPO42-、PO43-和Ca2+也会发生作用,进而促进CaHPO4和HA产物不断地沉积在镁合金基体表面。如图14e和f所示。

Ca2++HPO42-CaHPO4
(10)
10Ca2++6HPO42-+2OH-
Ca10(PO4)6(OH)2+6H+
(11)

4 结论

(1) 3种氨基酸诱导的Ca-P涂层的物相主要为HA和CaHPO4,但随着在Hank's溶液浸泡时间的延长,氨基酸诱导的Ca-P涂层也遭到部分破坏,出现CaHPO4峰消失和HA峰减少的现象。与Ca-P涂层相比,3种氨基酸有机添加剂均能够不同程度地增大Ca-P涂层的厚度,并且氨基酸诱导的Ca-P涂层更为致密,且呈现出规则的荷叶状晶体。其中天冬酰胺的加入明显增加了Ca-PAsn涂层的厚度和致密性。

(2) 动电位极化曲线和EIS结果均表明,3种氨基酸诱导的Ca-P涂层的耐蚀性能较AZ31镁合金基体及Ca-P涂层均有所提高,相对来说,天冬酰胺的加入对Ca-P涂层耐蚀性能的提高最为明显。

(3) 氨基酸促进Ca-P涂层成膜的机理通常归因于其对金属离子的吸附,即氨基酸中的极性官能团优先吸附在镁合金表面,与Ca2+作用形成中间物,羧基与溶液中游离Ca2+和Mg2+发生反应,同时溶液中的Ca2+、HPO42-及PO43-在分子识别作用下,最终诱导成膜。其中苯丙氨酸中的苯环在镁合金表面形成定向排列,甲硫氨酸中的S活性中心与镁合金表面发生结合,而天冬酰胺与其他2种氨基酸相比,则有较多的N原子吸附在镁合金表面,因而天冬酰胺诱导的Ca-P涂层耐蚀性最佳。

参考文献

Zeng R C, Cui L Y, Ke W.

Biomedical magnesium alloys: Composition, microstructure and corrosion

[J]. Acta Metall. Sin., 2018, 54: 1215

[本文引用: 1]

曾荣昌, 崔蓝月, 柯 伟.

医用镁合金: 成分、组织及腐蚀

[J]. 金属学报, 2018, 54: 1215

[本文引用: 1]

Song Y W, Shan D Y, Chen R S, et al.

Effect of second phases on the corrosion behaviour of wrought Mg-Zn-Y-Zr alloy

[J]. Corros. Sci., 2010, 52: 1830

[本文引用: 1]

Zheng Y F, Yang H T.

Research progress in biodegradable metals for stent application

[J]. Acta Metall. Sin., 2017, 53: 1227

郑玉峰, 杨宏韬.

血管支架用可降解金属研究进展

[J]. 金属学报, 2017, 53: 1227

Gao G J, Zeng M Q, Zhang E L, et al.

Dealloying corrosion of anodic and nanometric Mg41Nd5 in solid solution-treated Mg-3Nd-1Li-0.2Zn alloy

[J]. J. Mater. Sci. Technol., 2021, 83: 161

[本文引用: 1]

Ding Z Y, Cui L Y, Zeng R C.

Recent development of self-healing coating on magnesium alloys: A review

[J]. Surf. Technol., 2019, 48(3): 1

[本文引用: 1]

丁自友, 崔蓝月, 曾荣昌.

镁合金表面自愈合涂层进展

[J]. 表面技术, 2019, 48(3): 1

[本文引用: 1]

Yin Z Z, Qi W C, Zeng R C, et al.

Advances in coatings on biodegradable magnesium alloys

[J]. J. Magnes. Alloys, 2020, 8: 42

[本文引用: 1]

Li C Y, Fan X L, Cui L Y, et al.

Corrosion resistance and electrical conductivity of a nano ATO-doped MAO/methyltrimethoxysilane composite coating on magnesium alloy AZ31

[J]. Corros. Sci., 2020, 168: 108570

[本文引用: 1]

Córdoba L C, Marques A, Taryba M, et al.

Hybrid coatings with collagen and chitosan for improved bioactivity of Mg alloys

[J]. Surf. Coat. Technol., 2018, 341: 103

[本文引用: 1]

Li L Y, Cui L Y, Zeng R C, et al.

Advances in functionalized polymer coatings on biodegradable magnesium alloys—A review

[J]. Acta Biomater., 2018, 79: 23

Li J A, Chen L, Zhang X Q, et al.

Enhancing biocompatibility and corrosion resistance of biodegradable Mg-Zn-Y-Nd alloy by preparing PDA/HA coating for potential application of cardiovascular biomaterials

[J]. Mater. Sci. Eng., 2020, C109: 110607

[本文引用: 1]

Zhou P, Yu B X, Hou Y J, et al.

Revisiting the cracking of chemical conversion coating on magnesium alloys

[J]. Corros. Sci., 2021, 178: 109069

[本文引用: 1]

Li F, Yin Z Z, Zhang F, et al.

Research advances of layered double hydroxides coatings on biomedical metals

[J]. Surf. Technol., 2021, 50(2): 1

[本文引用: 1]

李 峰, 殷正正, 张 芬.

生物医用金属表面水滑石涂层的研究进展

[J]. 表面技术, 2021, 50(2): 1

[本文引用: 1]

Han L Y, Li X, Xue F, et al.

Biocorrosion behavior of micro-arc-oxidized AZ31 magnesium alloy in different simulated dynamic physiological environments

[J]. Surf. Coat. Technol., 2019, 361: 240

[本文引用: 1]

Zhang Z Q, Wang L, Zeng M Q, et al.

Biodegradation behavior of micro-arc oxidation coating on magnesium alloy—From a protein perspective

[J]. Bioact. Mater., 2020, 5: 398

[本文引用: 1]

Ding R, Chen S, Lv J, et al.

Study on graphene modified organic anti-corrosion coatings: A comprehensive review

[J]. J. Alloys Compd., 2019, 806: 611

[本文引用: 1]

Yang Y X, Fang Z, Liu Y H, et al.

Biodegradation, hemocompatibility and covalent bonding mechanism of electrografting polyethylacrylate coating on Mg alloy for cardiovascular stent

[J]. J. Mater. Sci. Technol., 2020, 46: 114

[本文引用: 1]

Ashassi-Sorkhabi H, Moradi-Alavian S, Esrafili M D, et al.

Hybrid sol-gel coatings based on silanes-amino acids for corrosion protection of AZ91 magnesium alloy: Electrochemical and DFT insights

[J]. Prog. Org. Coat., 2019, 131: 191

[本文引用: 1]

Wang L N, Liu L J, Yan Y, et al.

Influences of protein adsorption on the in vitro corrosion of biomedical metals

[J]. Acta Metall. Sin., 2021, 57: 1

[本文引用: 1]

王鲁宁, 刘丽君, 岩 雨.

蛋白质吸附对医用金属材料体外腐蚀行为的影响

[J]. 金属学报, 2021, 57: 1

[本文引用: 1]

Qian J H, Zhang S Q, Liu L.

The corrosion inhibition action of five amino acid compounds on copper in HCl solution

[J]. Chemistry, 2014, 77: 170

[本文引用: 1]

钱建华, 张思倩, 刘 琳.

五种氨基酸在HCl溶液中对铜的缓蚀作用

[J]. 化学通报, 2014, 77: 170

[本文引用: 1]

Stimpfling T, Vialat P, Hintze-Bruening H, et al.

Amino acid interleaved layered double hydroxides as promising hybrid materials for AA2024 corrosion inhibition

[J]. Eur. J. Inorg. Chem., 2016, 2016: 2006

[本文引用: 2]

Zhang J, Yan Y G, Ren Z J, et al.

Experimental evaluation of inhibition performance and inhibition mechanism analysis of amino acid inhibitors

[J]. J. China Univ. Petrol. (Ed. Nat. Sci.), 2010, 34(3): 152

[本文引用: 1]

张 军, 燕友果, 任振甲.

氨基酸缓蚀剂缓蚀性能的实验评价与缓蚀机制分析

[J]. 中国石油大学学报(自然科学版), 2010, 34(3): 152

[本文引用: 1]

El-Hafez G M, Badawy W A.

The use of cysteine, N-acetyl cysteine and methionine as environmentally friendly corrosion inhibitors for Cu-10Al-5Ni alloy in neutral chloride solutions

[J]. Electrochim. Acta, 2013, 108: 860

[本文引用: 1]

Zhao R X, Xu W D, Yu Q, et al.

Synergistic effect of SAMs of S-containing amino acids and surfactant on corrosion inhibition of 316L stainless steel in 0.5 M NaCl solution

[J]. J. Mol. Liq., 2020, 318: 114322

[本文引用: 1]

Wang Y, Ding B H, Gao S Y, et al.

In vitro corrosion of pure Mg in phosphate buffer solution—Influences of isoelectric point and molecular structure of amino acids

[J]. Mater. Sci. Eng., 2019, C105: 110042

[本文引用: 1]

Fan X L, Li C Y, Wang Y B, et al.

Corrosion resistance of an amino acid-bioinspired calcium phosphate coating on magnesium alloy AZ31

[J]. J. Mater. Sci. Technol., 2020, 49: 224

[本文引用: 2]

Mei D, Lamaka S V, Feiler C, et al.

The effect of small-molecule bio-relevant organic components at low concentration on the corrosion of commercially pure Mg and Mg-0.8Ca alloy: An overall perspective

[J]. Corros. Sci., 2019, 153: 258

[本文引用: 1]

Li Q T, Ye W B, Gao H, et al.

Improving the corrosion resistance of ZEK100 magnesium alloy by combining high-pressure torsion technology with hydroxyapatite coating

[J]. Mater. Des., 2019, 181: 107933

[本文引用: 1]

Cui L Y, Cheng S C, Liang L X, et al.

In vitro corrosion resistance of layer-by-layer assembled polyacrylic acid multilayers induced Ca-P coating on magnesium alloy AZ31

[J]. Bioact. Mater., 2020, 5: 153

[本文引用: 1]

Duan G Q, Yang L X, Liao S J, et al.

Designing for the chemical conversion coating with high corrosion resistance and low electrical contact resistance on AZ91D magnesium alloy

[J]. Corros. Sci., 2018, 135: 197

[本文引用: 1]

Jian S Y, Chu Y R, Lin C S.

Permanganate conversion coating on AZ31 magnesium alloys with enhanced corrosion resistance

[J]. Corros. Sci., 2015, 93: 301

[本文引用: 1]

Li C Y, Fan X L, Zeng R C, et al.

Corrosion resistance of in-situ growth of nano-sized Mg(OH)2 on micro-arc oxidized magnesium alloy AZ31—Influence of EDTA

[J]. J. Mater. Sci. Technol., 2019, 35: 1088

[本文引用: 1]

Song Y W, Han E H, Dong K H, et al.

Study of the corrosion product films formed on the surface of Mg-xZn alloys in NaCl solution

[J]. Corros. Sci., 2014, 88: 215

[本文引用: 1]

Gomes M P, Costa I, Pébère N, et al.

On the corrosion mechanism of Mg investigated by electrochemical impedance spectroscopy

[J]. Electrochim. Acta, 2019, 306: 61

[本文引用: 1]

Guo Y T, Su Y C, Gu R, et al.

Enhanced corrosion resistance and biocompatibility of biodegradable magnesium alloy modified by calcium phosphate/collagen coating

[J]. Surf. Coat. Technol., 2020, 401: 126318

[本文引用: 2]

Liu L, Yang Q Y, Huang L, et al.

The effects of a phytic acid/calcium ion conversion coating on the corrosion behavior and osteoinductivity of a magnesium-strontium alloy

[J]. Appl. Surf. Sci., 2019, 484: 511

[本文引用: 1]

Yan W, Lian Y J, Zhang Z Y, et al.

In vitro degradation of pure magnesium—The synergetic influences of glucose and albumin

[J]. Bioact. Mater., 2020, 5: 318

[本文引用: 1]

Cui L Y, Wei G B, Han Z Z, et al.

In vitro corrosion resistance and antibacterial performance of novel tin dioxide-doped calcium phosphate coating on degradable Mg-1Li-1Ca alloy

[J]. J. Mater. Sci. Technol., 2019, 35: 254

[本文引用: 1]

Liu W, Yan Z J, Zhang Z D, et al.

Bioactive and anti-corrosive bio-MOF-1 coating on magnesium alloy for bone repair application

[J]. J. Alloys Compd., 2019, 788: 705

[本文引用: 1]

Zhang Z Q, Zeng R C, Lin C G, et al.

Corrosion resistance of self-cleaning silane/polypropylene composite coatings on magnesium alloy AZ31

[J]. Mater. Sci. Technol., 2020, 41: 43

[本文引用: 1]

Guo Y T, Jia S Q, Qiao L, et al.

Enhanced corrosion resistance and biocompatibility of polydopamine/dicalcium phosphate dihydrate/collagen composite coating on magnesium alloy for orthopedic applications

[J]. J. Alloys Compd., 2020, 817: 152782

[本文引用: 1]

Fang Z, Wang J F, Yang X F, et al.

Adsorption of arginine, glycine and aspartic acid on Mg and Mg-based alloy surfaces: A first-principles study

[J]. Appl. Surf. Sci., 2017, 409: 149

[本文引用: 1]

Nie Y J, Gao J X, Wang E D, et al.

An effective hybrid organic/inorganic inhibitor for alkaline aluminum-air fuel cells

[J]. Electrochim. Acta, 2017, 248: 478

[本文引用: 1]

Ashraf M A, Liu Z L, Peng W X, et al.

Amino acid and TiO2 nanoparticles mixture inserted into sol-gel coatings: An efficient corrosion protection system for AZ91 magnesium alloy

[J]. Prog. Org. Coat., 2019, 136: 105296

[本文引用: 1]

Fang Z, Wang J F, Zhu S J, et al.

A DFT study of the adsorption of short peptides on Mg and Mg-based alloy surfaces

[J]. Phys. Chem. Chem. Phys., 2018, 20: 3602

[本文引用: 1]

Ashassi-Sorkhabi H, Moradi-Alavian S, Jafari R, et al.

Effect of amino acids and montmorillonite nanoparticles on improving the corrosion protection characteristics of hybrid sol-gel coating applied on AZ91 Mg alloy

[J]. Mater. Chem. Phys., 2019, 225: 298

[本文引用: 1]

/