金属学报, 2020, 56(12): 1581-1591 DOI: 10.11900/0412.1961.2020.00124

热轧变形量对高钛耐磨钢组织与力学性能的影响

许帅1, 孙新军,1, 梁小凯1, 刘俊2, 雍岐龙1

1 钢铁研究总院工程用钢研究所 北京 100081

2 江阴兴澄特种钢铁有限公司 江阴 214400

Effect of Hot Rolling Deformation on Microstructure and Mechanical Properties of a High-Ti Wear-Resistant Steel

XU Shuai1, SUN Xinjun,1, LIANG Xiaokai1, LIU Jun2, YONG Qilong1

1 Department of Structural Steels, Central Iron & Steel Research Institute, Beijing 100081, China

2 Jiangyin Xingcheng Special Steel Co., Ltd., Jiangyin 214400, China

通讯作者: 孙新军,sunxinjun@cisri.com.cn,主要从事先进钢铁材料的研究与开发

责任编辑: 毕淑娟

收稿日期: 2020-04-17   修回日期: 2020-06-18   网络出版日期: 2020-12-11

基金资助: 国家重点研发计划项目.  2017YFB0305100

Corresponding authors: SUN Xinjun, professor, Tel: 13911619639, E-mail:sunxinjun@cisri.com.cn

Received: 2020-04-17   Revised: 2020-06-18   Online: 2020-12-11

Fund supported: National Key Research and Development Program of China.  2017YFB0305100

作者简介 About authors

许帅,男,1995年生,硕士生

摘要

通过不同总压缩比的实验室热轧、微观组织和析出相表征及力学性能测试等实验,研究了热轧变形量对经过轧后热处理的高钛耐磨钢组织和力学性能的影响。随着轧制变形量的增大,高钛耐磨钢的强度、韧性和塑性均有提高:屈服强度、抗拉强度和总延伸率从压缩比为3∶1时的1202 MPa、1437 MPa和7.4%分别提高到压缩比为30∶1时的1311 MPa、1484 MPa和9.9%,而室温Charpy冲击功从压缩比为3∶1时的11 J大幅提高到压缩比为10∶1时的24 J。随着轧制变形量增大,铸态析出的微米级网状TiC逐渐细化和均匀化,同时尺寸小于15 nm的TiC颗粒占比增加,热处理后的原奥氏体晶粒尺寸则不断减小。通过对高钛耐磨钢各种强化方式的定量分析表明,采用沉淀强化和位错强化均方根叠加方式计算得到的高钛耐磨钢屈服强度与实测值吻合较好,高钛耐磨钢屈服强度随轧制压缩比增加而上升主要是由于晶界强化和沉淀强化作用增加所致。高钛耐磨钢的韧性和塑性随强度的提高不降反升,主要是因为大颗粒TiC在轧制变形过程中发生细化和均匀化。

关键词: 高钛耐磨钢 ; 压缩比 ; TiC析出 ; 力学性能 ; 强化机理

Abstract

To improve the wear performance of steel without increasing its hardness, a high-Ti wear-resistant steel was reinforced with TiC particles. The effects of hot rolling deformation on the microstructure and mechanical properties of the wear-resistant steel containing 0.61%Ti after quenching and tempering were studied in hot rolling experiments with different reduction ratios. The steel products were subjected to microstructure and precipitate characterization and mechanical-property tests. Increasing the rolling deformation improved the strength, toughness, and plasticity of the tested steel. The yield strength, tensile strength, and total elongation were increased from 1202 MPa, 1437 MPa, and 7.4%, respectively, at a reduction ratio of 3∶1 to 1311 MPa, 1484 MPa, and 9.9%, respectively, at a reduction ratio of 30∶1. Meanwhile, increasing the reduction ratio from 3∶1 to 10∶1 remarkably increased the absorbed energy at room temperature (obtained in a Charpy impact test) from 11 J to 24 J. As the rolling deformation increased, the micron-sized net-like TiC particles that precipitated during solidification were gradually refined and homogenized, and the prior austenite grain size was also refined. Next, the strengthening mechanisms of the steel were quantitatively analyzed. The yield strength, calculated by adding the root mean squares of the dislocation and precipitate strengthening values, well agreed with the measured yield strength. The increasing yield strength of the tested steel at higher rolling reduction ratios is mainly attributable to increased grain-boundary strengthening and precipitation strengthening. As the strength of the steel increased, the toughness and plasticity also increased, mainly because the large TiC particles were refined and homogenized during the rolling deformation.

Keywords: high-Ti wear-resistant steel ; rolling reduction ratio ; TiC precipitation ; mechanical property ; strengthening mechanism

PDF (3955KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

许帅, 孙新军, 梁小凯, 刘俊, 雍岐龙. 热轧变形量对高钛耐磨钢组织与力学性能的影响. 金属学报[J], 2020, 56(12): 1581-1591 DOI:10.11900/0412.1961.2020.00124

XU Shuai, SUN Xinjun, LIANG Xiaokai, LIU Jun, YONG Qilong. Effect of Hot Rolling Deformation on Microstructure and Mechanical Properties of a High-Ti Wear-Resistant Steel. Acta Metallurgica Sinica[J], 2020, 56(12): 1581-1591 DOI:10.11900/0412.1961.2020.00124

与高锰钢、高铬铸铁等传统耐磨材料相比,低合金马氏体耐磨钢在生产工艺、成本、综合性能等方面都具有明显优势,因此得到了广泛应用。但是现有的低合金马氏体耐磨钢主要依靠提高钢中C含量进而提高马氏体硬度的方法来提高耐磨性,这就导致了材料的机械加工性能及焊接性能的下降,严重制约了高硬度耐磨钢的应用。因此,如何在不增加硬度、不降低加工性能的同时提高耐磨性,就成了目前开发高性能耐磨钢面临的难题[1~5]

近年来,在基体中引入第二相粒子的颗粒增强型耐磨钢引起了广泛关注[6~8]。已有研究[9]表明,通过高钛微合金化(Ti质量分数为0.20%~0.80%)及铸坯(锭)原位内生反应在钢基体中引入超硬TiC颗粒,可实现不增加硬度的同时材料耐磨性的大幅提高。与常规钛微合金钢不同的是,新型高钛耐磨钢由于其Ti含量远高于常规钛微合金钢,导致TiC粒子呈现出独特的“微米-亚微米-纳米”三峰分布特征;微米级TiC颗粒来源于在凝固末期发生的L→γ+TiC共晶反应,亚微米TiC颗粒主要是从凝固后的高温奥氏体中析出,而纳米级TiC颗粒主要是在热轧过程中通过形变诱导析出方式从奥氏体中析出[10]。研究还发现,材料耐磨性的提高主要归因于钢中微米级颗粒对磨损沟槽的有效阻碍作用,而亚微米和纳米级颗粒由于其尺寸显著小于沟槽宽度和深度,则起不到相应作用[9]。高钛耐磨钢中Ti含量升高使微米级TiC含量增加,而对亚微米、纳米级TiC含量的影响不大,因此材料的强度(硬度)随Ti含量升高变化也不大,从而能够实现不增加钢材硬度的同时提高其耐磨性[11]。但是,由于大颗粒的微米级TiC硬度极高(3200 HV),析出相和基体界面处变形的不协调很容易在基体中诱发裂纹;同时,它与基体之间的热膨胀差异而导致的镶嵌应力也容易促使TiC自身发生断裂,裂纹进一步扩展到基体后则诱发基体断裂[12]。因此,钢中微米级TiC颗粒的存在将导致材料韧塑性的下降。有研究[13]表明,钢中夹杂物与基体间的应力随着夹杂物尺寸的增大而增大,热轧变形可望在一定程度上碎化钢中大尺寸TiC,特别是对韧塑性危害极大的片状共晶TiC,逐步实现钢中TiC的细化和均匀化,有利于提高钢材的韧塑性。然而,当前关于高钛耐磨钢的研究主要集中于Ti含量对钢板组织和性能的影响规律,而对轧制变形量的影响及其微观机理的研究尚未见报道。

本工作以Ti含量为0.61%的低合金马氏体耐磨钢为研究对象,通过不同总变形量的轧制和轧后热处理得到全马氏体基体组织,研究了轧制变形量对材料的基体组织、TiC析出相及力学性能的影响,分析了高钛耐磨钢中的各种强化机制并揭示了轧制变形量对其影响规律,以期为高钛耐磨钢的工业生产和应用提供理论和实验依据。

1 实验方法

实验用高钛耐磨钢的化学成分为(质量分数,%):C 0.31,Si 0.28,Mn 0.51,Ti 0.61,Cr 0.82,Ni 0.61,Mo 0.29,B 0.0015,Al 0.021,P 0.004,S 0.005,Fe余量。高钛耐磨钢采用150 kg真空冶炼炉冶炼,浇铸成100 mm×120 mm×90 mm的铸锭,然后经过不同变形量的轧制得到不同厚度的钢板。高钛耐磨钢的轧制及热处理工艺如图1所示,不同压缩比的轧制实验压下量分配见表1。轧制前将铸锭置于箱式电阻炉中加热至1200 ℃保温2 h,开轧温度1100~1150 ℃,终轧温度830~850 ℃。按照表1中设定的5种轧制工艺进行轧制:通过不同总变形量的轧制得到厚度分别为30、18、12、9和3 mm的钢板,经过每个道次轧制后钢板的实际厚度见表1,对应轧制压缩比分别为3∶1、5∶1、7.5∶1、10∶1和30∶1,以No.90-3样品为例,经过2道次轧制后等温至950 ℃继续轧制,再经过6道次轧制后等温至850 ℃继续轧制至目标厚度,热轧后水淬至室温。将热轧后的钢板放置于电阻炉中加热至900 ℃完全奥氏体化,保温0.5 h出炉后立即水淬至室温得到完全的马氏体组织,之后在200 ℃下进行回火处理0.5 h。

图1

图1   高钛耐磨钢轧制与热处理工艺示意图

Fig.1   Schematic of rolling and heat treatment process of high-Ti wear-resistant steel (W.Q.—water quenching, A.C.—air cooling)


表1   不同轧制变形量高钛耐磨钢轧制工艺

Table 1  Rolling process of high Ti wear-resistant steel with different rolling deformations

Sample No.The actual thickness of the plate after each pass / mmTotal reduction ratio
90-3090-72-58-(950 ℃)-44-35-(850 ℃)-303∶1
90-1890-72-58-(950 ℃)-44-33-(850 ℃)-24-185∶1
90-1290-72-58-(950 ℃)-44-33-24-18-(850 ℃)-14-127.5∶1
90-990-72-58-(950 ℃)-44-33-24-18-(850 ℃)-13-910∶1
90-390-72-58-(950 ℃)-44-33-24-18-13-9-(850 ℃)-6-4-330∶1

新窗口打开| 下载CSV


用于铸态组织和TiC析出观察的金相试样取自热轧前的铸锭(1/4厚度处)。使用线切割的方法从热处理后的钢板切取金相试样,经过研磨抛光后,用4% (体积分数)硝酸酒精溶液腐蚀,用于组织形貌观察。通过研磨后自动抛光(抛光剂为SiO2悬浊液)的试样,可用于观察试样中TiC粒子的形貌和分布。金相组织观察和TiC形貌及元素分析通过GX51型光学显微镜(OM)和配有Oxford X-Max 50能谱仪(EDS)的S-4300型扫描电子显微镜(SEM)进行。使用Image J软件按照等积圆面积法统计微米级TiC粒子的粒径,使用截线法对原奥氏体晶粒尺寸进行统计。使用H-800型透射电子显微镜(TEM)对不同尺寸的TiC粒子进行观察,使用配有EDAX Genesis能谱仪的Tecnai G2 F20型高分辨透射电子显微镜(HRTEM)对钢中第二相形貌、粒子成分进行分析。碳膜复形样品按以下步骤制取:将金相样品经过4%硝酸酒精溶液腐蚀后真空喷碳,喷碳完成后用小刀将碳膜划成小块放入4%硝酸酒精溶液中脱模,将脱下的碳膜依次放入酒精和蒸馏水中清洗,用直径3 mm的Cu网捞起干燥后进行TEM观察。拉伸实验使用WE-300型标准拉伸试验机在室温下进行。拉伸试样为标准板拉伸试样(GB/T 228.1-2010规定的标准板拉伸尺寸),固定标距为50 mm。冲击实验使用FWC332-1800-G型标准冲击试验机在室温下进行。冲击试样为V型缺口试样,缺口深度2 mm。冲击试样尺寸为10 mm×10 mm×55 mm,(No.90-12样品实际尺寸为9 mm×10 mm×55 mm),拉伸和冲击试样取样方向为平行于轧制方向,每组试样取3个平行试样。使用D8 ADVANCE型X射线衍射仪(XRD)测定样品中的位错密度。

通过物理化学相分析实验对高钛耐磨钢中第二相粒子进行鉴定与分析。将抛光后的样品电解得到电解残渣,对电解残渣通过X'Pert Pro MPD型X射线衍射仪和HK-8800型等离子体发射光谱仪(ICP)分析得到样品中第二相的类型和含量,利用小角度X射线散射法(SAXS)检测第二相粒子的粒径分布。

2 实验结果

2.1 基体组织

图2给出了高钛耐磨钢在不同轧制工艺条件下基体组织的SEM像。可见,经过淬火加回火热处理后,各组样品基体组织均为板条马氏体组织。同时,还可以观察到大尺寸TiC分布在基体中,TiC粒子的形状包括棒状、多边形块状和球形颗粒状。此外,还可以看到基体中弥散分布着一些小颗粒TiC,这些TiC粒子直径为几百纳米,是在凝固后高温固态析出的[10]。随着轧制压缩比增加,棒状TiC逐渐断裂碎化,多边形块状和球形颗粒状TiC粒子逐渐增多,即TiC粒子的平均尺寸和长宽比减小。图3所示为不同轧制工艺下奥氏体晶粒的OM像。经过定量金相统计,得到Nos.90-30、90-18、90-12、90-9和90-3样品对应的奥氏体晶粒平均尺寸分别为8.1、6.5、5.1、4.9和3.5 μm。可以看出随着轧制压缩比的增加,高钛耐磨钢原奥氏体晶粒进一步细化,与No.90-30样品相比,No.90-3样品的原奥氏体晶粒尺寸从8.1 μm左右细化到了3.5 μm左右。与此同时,马氏体板条束宽度也随之细化。关于晶粒细化的原因,一方面与应变诱导析出的纳米TiC粒子有关,这些细小的TiC粒子会对晶界迁移产生钉扎作用[14],另一方面轧制压缩比的增加会导致形核率的增大从而细化晶粒。

图2

图2   不同轧制工艺的高钛耐磨钢基体组织的SEM像

Fig.2   SEM images of matrix microstructure in high-Ti wear-resistant steel samples No.90-30 (a), No.90-18 (b), No.90-12 (c), No.90-9 (d) and No.90-3 (e)


图3

图3   不同轧制工艺高钛耐磨钢原奥氏体晶粒的OM像

Fig.3   OM images of prior-austenite microstructures in high-Ti wear-resistant steel samples No.90-30 (a), No.90-18 (b), No.90-12 (c), No.90-9 (d) and No.90-3 (e)


2.2 TiC析出相

为了排除基体组织对析出相观察的干扰,将铸态和不同轧制压缩比的样品抛光后不经腐蚀直接在OM下观察,结果如图4所示。使用Image J软件按照等积圆面积法对粒径大于0.3 μm的TiC析出相进行定量金相统计,结果列于表2中。由于高钛耐磨钢中添加了0.61%的Ti,微米级TiC是在凝固末期从钢液中直接析出[10],在铸态样品中呈网状分布(图4a)。经过3∶1压缩比的轧制后,TiC分布均匀性虽然稍有改善,但仍保留着大部分铸态时的网状分布特征,且TiC粒子尺寸较为粗大,平均直径为3.07 μm,最大TiC粒子尺寸达到了13.67 μm,在此种轧制工艺下TiC粒子的碎化效果有限(图4b)。随着轧制压下量增加,TiC粒子分布均匀性明显改善,且粒子尺寸明显减小(图4c~f)。对于No.90-3样品,TiC粒子分布较为均匀,粒子平均直径减小到2.51 μm,最大粒子的尺寸也下降到8.08 μm,在此种轧制工艺下,TiC粒子得到了充分的碎化和均匀化。

图4

图4   铸态和不同轧制工艺的高钛耐磨钢中TiC析出相的OM像

Fig.4   OM images of TiC particles in as-cast high-Ti wear-resistant steel (a) and samples No.90-30 (b), No.90-18 (c), No.90-12 (d), No.90-9 (e) and No.90-3 (f)


表2   高钛耐磨钢中TiC粒子金相统计结果

Table 2  Metallographic statistics of TiC particles in high-Ti wear-resistant steel

Sample No.

Volume fraction

%

Average area

μm2

Average diameter

μm

Maximum diameter

μm

Aspect ratio
90-301.1110.193.0713.672.85
90-181.099.312.8511.842.47
90-121.078.452.669.962.21
90-91.087.872.579.122.03
90-31.107.222.518.081.94

新窗口打开| 下载CSV


图5a~c为不同轧制变形量下高钛耐磨钢中析出相的TEM像。可见,不同轧制工艺下试样中均分布着大量近球形纳米级析出物,尺寸分布在3~50 nm范围内。对于轧制压缩比为3∶1的试样,析出相尺寸多为几十纳米,尺寸为5~10 nm的析出相较少(图5a),随着轧制压缩比增加,5~10 nm的析出相明显增加(图5b和c)。与图4中的微米级析出相在凝固后期从液态中析出不同,图5中观察到的纳米级析出物主要是在轧制过程中形变诱导析出[10]图5d为No.90-12样品中一个尺寸约10 nm析出相的HRTEM像,对析出相进行选区电子衍射(SAED)花样标定和EDS分析(图5e和f)可以得出,析出相为具有NaCl结构的(Ti, Mo)C,Mo原子在TiC析出过程中扩散到TiC晶格中置换了一部分Ti原子,最终得到了(Ti, Mo)C复合析出相[15]。由于碳膜覆盖在Cu网上进行观察,EDS中不可避免地出现了Cu元素峰。

图5

图5   TiC析出相的TEM像、HRTEM像、SAED花样和EDS结果

Fig.5   TEM images of TiC precipitate in samples No.90-30 (a), No.90-12 (b) and No.90-3 (c), and HRTEM image (d), SAED pattern (e) and EDS result (f) of TiC particle in sample No.90-12 (d(111)—interplanar spacing of (111))


综上所述,在高钛耐磨钢基体中观察到3种不同尺度的TiC粒子(图4中的微米级TiC粒子和亚微米级TiC粒子以及图5中的纳米级TiC粒子)。对No.90-18试样中TiC粒子的粒径尺寸进行定量统计,结果见图6图6a给出的是利用定量金相统计得到的粒径分布,限于OM的分辨率,为保证统计结果的精确性,该方法只统计了粒径0.3 μm以上的粒子;图6b给出的是利用SAXS测出的尺寸0~300 nm粒子的粒径分布,由于仪器分辨率限制,尺寸大于300 nm粒子不能测出。需要指出的是,该结果并非由相分析直接得出,而是由高钛耐磨钢的初始成分计算得出的总的TiC体积分数减去金相统计的粒径300 nm以上TiC粒子的体积分数,得到粒径300 nm以下TiC的体积分数,再结合相分析结果计算得出粒径在300 nm以下TiC粒子各个粒径区间的体积分数,具体方法参见文献[10],综合图6a和b即可得到该样品的全尺度粒径分布。上述不同尺度的TiC粒子在高钛耐磨钢中发挥的作用也各不相同,微米级TiC粒子可显著提升材料耐磨性,但对韧塑性有一定的危害;纳米级TiC可以对材料产生沉淀强化和细晶强化作用;亚微米级TiC与微米级TiC相比尺寸较小,因而对耐磨性影响不大,而与纳米级TiC相比尺寸又偏大,因而其沉淀强化和细晶强化作用也较小。

图6

图6   No.90-18样品中的TiC粒径分布图

Fig.6   TiC particle diameter distributions of sample No.90-18 measured by quantitative metallography (a) and SAXS (b)


图7给出了不同轧制压缩比样品热处理后的相分析粒径分布,图中只统计了直径300 nm以下的粒子。可见,随着轧制压缩比增加,粒径在15 nm以下粒子的体积分数明显增加。高钛耐磨钢中纳米级TiC为轧制过程中形变诱导析出的产物。随着轧制压缩比增大,奥氏体在未再结晶区的变形量增加,奥氏体中位错密度上升,为TiC粒子提供更多的形核位置,提高了其形核率,从而最终导致纳米级TiC粒子的细化,在大压缩比试样中析出更多小尺寸TiC粒子。

图7

图7   不同轧制工艺高钛耐磨钢中的TiC粒径分布图

Fig.7   TiC particle diameter distribution of high-Ti wear- resistant steel with different rolling processes


2.3 力学性能

高钛耐磨钢的拉伸性能和室温冲击性能如图8所示。图8a给出了强度随轧制压缩比变化的情况。可以看到随轧制压缩比增加,抗拉强度和屈服强度均有上升,分别从压缩比为3∶1时的1202和1437 MPa提高到压缩比为30∶1时的1311和1484 MPa。这主要与基体中析出的纳米级TiC粒子增多导致晶界强化和沉淀强化作用增强有关,此外,位错密度的增加也会导致材料强度的上升,这一点将在3.1节中详细说明。图8b给出了高钛耐磨钢延伸率随轧制压缩比变化的情况。可见,总延伸率也随轧制压缩比增加呈上升的趋势,由压缩比为3∶1时的7.4%上升到压缩比为30∶1时的9.9%。总延伸率由2部分组成:均匀变形阶段延伸率与非均匀变形阶段(颈缩发生后)延伸率,随着轧制压缩比增大,非均匀延伸率增大,而均匀延伸率基本不变,非均匀延伸率的增大是导致总延伸率增大的原因。由图8c可以看到,随着轧制压缩比增加,高钛耐磨钢的冲击性能呈上升的趋势,其中No.90-9冲击样品由于实际厚度为9 mm,因此将其实际冲击功数值乘以10/9换算为10 mm厚标准冲击样品数值以便对比。压缩比为3∶1时,冲击功仅为11 J,压缩比增加到10∶1时,冲击功上升至24 J。

图8

图8   不同轧制工艺高钛耐磨钢的拉伸和冲击性能

Fig.8   Strength (a), elongation (b) and Charpy impact absorbed energy (c) of high-Ti wear-resistant steel with different rolling processes


3 分析讨论

3.1 强化机理分析

金属材料的强化机制主要有:沉淀强化、位错强化、固溶强化和晶界强化。

3.1.1 沉淀强化

沉淀强化增量(Δσp)的表达式可以用Ashby-Orowan模型为基础推导得出[16,17]

Δσp=8.995×103f1/2dln (2.417d)

式中,f为第二相的体积分数,d为第二相颗粒的尺寸。滑移位错以Orowan机制绕过不可变形颗粒时,由于位错弯曲将增大位错的线张力,因此需要更大的外加应力才能使位错越过第二相颗粒而继续滑移,由此导致了材料的强化。由式(1)可知,第二相强化的强化效果与f1/2成正比,随着d的增大而减小,因此在第二相粒子体积分数相同的情况下,细化第二相粒子的尺寸可以显著提升沉淀强化效果。在根据图7的相分析结果计算各个粒径区间粒子的强化增量时,仅考虑了粒径60 nm以下的部分,这是因为根据式(1)可得,粒径60 nm以上的粒子的沉淀强化效果很有限,可以忽略不计。以No.90-3样品为例,粒径尺寸在1~5 nm的粒子体积分数为0.012%,带入式(1)计算可得强化增量为168 MPa;而粒径尺寸在36~60 nm的粒子体积分数为0.005%,带来的沉淀强化增量仅为2.8 MPa;因此在计算沉淀强化增量时忽略60 nm以上的粒子是合理的。将每个粒径区间粒子的数据按上述方法计算后的结果均方根叠加,最终可以得到每个样品总的沉淀强化增量,结果列于表3中。可见,随着轧制压缩比增加,纳米级TiC粒子带来的沉淀强化增量增加,这主要是沉淀强化效果较好的小尺寸TiC粒子(d<15 nm)体积分数增大所致。

表3   不同轧制工艺高钛耐磨钢中各种强化增量及实测屈服强度与式(6)和(7)计算结果的比较 (MPa)

Table 3  Various strengthening increments and comparisons of yield strengths between the experimental and calculated results with Eqs.(6) and (7) in high-Ti wear-resistant steel with different rolling processes

Sample No.σ0ΔσpΔσdΔσsΔσgΔσp2+Δσd2σy(6)σy(7)σy(exp)
90-305780410466230418149511711202
90-185777406466256413152211921217
90-1257142424466290447165012601220
90-957165425466295456168012741227
90-357176436466347470174113401311

Note:σ0—P-N force, Δσp—precipitation strengthening increment, Δσd—dislocation strengthening increment, Δσs—solution strengthening increment, Δσg—grain boundary strengthening increment, Δσp2+Δσd2—root mean square of both precipitation strengthening and dislocation strengthening, σy(6)—yield strength calculated with Eq.(6), σy(7)—yield strength calculated with Eq.(7), σy(exp)—experimentally measured yield strength

新窗口打开| 下载CSV


3.1.2 位错强化

低碳马氏体钢中存在大量位错,位错强化是低碳马氏体钢的主要强化方式。通常采用Taylor公式来计算位错强化增量(Δσd)[18]

Δσd=MαGbρ1/2

式中,M为Taylor因子,α为比例系数,根据相应的理论推导和实验结果[19],对于bcc的Fe,M=2.75,α=0.166;G为剪切模量,为78 GPa;b为Burgers矢量模,取0.248 nm;ρ为位错密度。采用Williamson-Hall法来估算材料的位错密度,该方法通过XRD测量由晶粒尺寸和微应变引起的衍射峰半高宽(FWHM)变化,将每个衍射峰对应的宽化量代入式(3)即可得到材料的位错密度[20]

ΔK0.9Dbmπρ2KC1/2   

式中,ΔK为衍射峰宽化量;D为材料的有效晶粒尺寸,即被大角度晶界所包围的晶粒尺寸;m为矫正系数,取0.263;K为每个峰对应的衍射矢量模;C为位错衬度系数。图9为高钛耐磨钢的XRD谱,将测量结果和文献[21]中各参数取值代入式(3),即可计算得出各组试样的位错密度,具体方法参见文献[20]。计算得出的高钛耐磨钢位错密度为2.1×1015~2.5×1015 m-2,结果列于表4中。已有研究[22]表明,低碳马氏体钢的位错密度数量级在1015 m-2;文献[23]采用TEM测得0.10%C钢中位错密度约为1.6×1015 m-2,而高钛耐磨钢马氏体基体中的C含量为0.14%,因此可以认为本工作的测量结果是合理的。将位错密度结果代入式(2)即可得到每个样品对应的位错强化增量,结果见表3。结果表明,在本工作所涉及的5组样品中,位错强化增量十分可观,达到410~440 MPa,是强度贡献的主要来源之一。此外,随着轧制压缩比增加,位错密度略有增加,位错强化增量也有所上升。

图9

图9   不同轧制工艺高钛耐磨钢的XRD谱

Fig.9   XRD spectra of high-Ti wear-resistant steel with different rolling processes(a) full peaks pattern(b) local magnification pattern of (200) diffraction peak


表4   不同轧制工艺高钛耐磨钢中的衍射峰半高宽(FWHM)和位错密度

Table 4  Dislocation density and full wave at half maximum (FWHM) in high-Ti wear-resistant steel with different rolling processes

Sample No.FWHM / (°)Dislocation density 1015 m-2
(110)(200)(211)
90-300.3190.6090.6132.154
90-180.3200.5710.5852.116
90-120.3450.5980.6182.301
90-90.3370.6080.6262.311
90-30.3470.6430.6132.443

新窗口打开| 下载CSV


3.1.3 固溶强化

固溶强化的本质是位错与固溶原子的弹性交互作用,在一定范围内,固溶强化的效果正比于固溶原子量,可用下式计算[16,24]

Δσs=3330C+4570N+470P+83Si+
80Ti+37Mn+11Mo-30Cr

式中,Δσs为固溶强化增量;[X]为X元素在基体中的固溶量,其中[C]由钢中C含量减去TiC所占C含量得到,为0.14%;Ti、N基本上以析出物的形式存在,其固溶量可以忽略不计;钢中其它元素与其化学成分相同。由此计算得出高钛耐磨钢的固溶强化增量为466 MPa。

3.1.4 晶界强化

晶界强化可用经典的Hall-Petch关系式来描述[25,26]

Δσg=KyD-1/2

式中,Δσg为晶界强化增量;Ky为比例系数。低碳马氏体钢的有效晶粒尺寸为板条块尺寸。由于马氏体板条块尺寸与原奥氏体晶粒尺寸成正比,因此晶界强化也与原奥氏体晶粒尺寸之间符合Hall-Petch关系,只是其比例系数不同前者。文献[27]给出了低碳(0.17%C)马氏体钢的晶界强化增量与原奥氏体晶粒尺寸Hall-Petch关系的比例系数为20.8 MPa/mm1/2,根据高钛耐磨钢不同轧制工艺下原奥氏体晶粒尺寸,计算出其晶界强化增量,结果见表3。与No.90-30样品相比,No.90-3样品晶界强化带来的屈服强度增量为117 MPa。

3.1.5 各种强化方式的叠加

由于不同的强化方式或大或小均存在一定的交互作用,因此不同强化效果的叠加是一个很复杂的问题,至今尚未完全解决。对于低碳微合金钢,经常采用简单的线性叠加,如式(6)所示:

σy=σ0+Δσs+Δσg+Δσp+Δσd

式中,σy为屈服强度,σ0为P-N力。根据前面得到的不同强化方式的强化效果,由式(6)计算出高钛耐磨钢的屈服强度如表3所示。可见,计算值显著高于实测值,因此线性叠加方式不适用于高钛耐磨钢。

Kocks和Mecking[28]将晶内阻止位错运动的障碍分为2类:一类为“软”障碍,如固溶原子等;另一类为“硬”障碍,如析出相和位错等;并认为滑动位错遇到软障碍只发生微小弯曲,则这种障碍的强化可以近似地与晶格摩擦力线性相加。但当滑动位错遇到硬障碍时,则因受其钉扎而明显弯曲,其强化效应是不能线性叠加的。滑动位错通过强障碍的临界应力(τ)表示为τ=Gb/L (其中,L为滑移面上的障碍物间距)。当滑移面上存在2类不同的障碍物A和B时,则障碍物间距由1/L2=1/LA2+1/LB2给出,由此得到障碍物A和B总的强化效果为:τ2τA2+τB2 (其中,τAτB分别为滑动位错通过障碍物A和B的临界应力),即τ=τA2+τB2。因此,对于位错强化和沉淀强化应采用均方根叠加方式,如式(7)所示:

σy=σ0+σs+σg+σd2+σp2

将计算结果列于表3中,可见,均方根叠加后与实测结果总体符合较好,最大偏差不超过50 MPa。从表中可以看出,在各种强化方式中固溶强化和位错强化提供的强度增量最多,是高钛耐磨钢中最主要的强化方式;而造成各组样品强度差异的主要原因是析出强化和晶界强化的变化:随着轧制压缩比增大,钢中纳米析出TiC增多(主要是粒径小于15 nm的TiC粒子),析出强化增量增加。此外,晶粒尺寸也随着轧制压缩比增大而减小,晶界强化增量增加。这2方面的因素综合作用致使高钛耐磨钢屈服强度随着轧制压缩比增加而增大。

3.2 轧制变形量对塑韧性的影响

高钛耐磨钢的冲击功随压缩比增大而明显提高,主要与以下2方面因素有关:(1) TiC颗粒的碎化和均匀化。TiC是脆性相,在外力作用下容易发生断裂而在钢中形成微裂纹,TiC尺寸越大,则其TiC断裂产生的微裂纹尺寸越大。图10为No.90-18样品冲击断口处一个TiC粒子的SEM像及其EDS结果。可见,该粒子尺寸约为5 μm,并有一条贯穿粒子的微裂纹。含有脆性第二相粒子材料的断裂应力公式如下[16]

图10

图10   No.90-18样品冲击断口处TiC粒子的SEM像和EDS结果

Fig.10   SEM image (a) and EDS result (b) of TiC particle in fracture morphology


σf=πEγpm1-ν2a12

式中,σf为材料的断裂应力,E为基体材料的弹性模量,γpm为第二相粒子和基体材料之间的界面能,ν为Poisson比,a为第二相颗粒直径。由式(8)可知,TiC尺寸越大,材料整体断裂应力就越低,就越容易发生脆性断裂。具有尖锐棱边的条状、片状颗粒在变形中的应力集中程度远大于等轴颗粒,导致材料整体断裂应力更低。此外,以网状或条带状分布的颗粒提供了裂纹低能量扩展途径,进一步降低材料韧性。由表2可见,随着轧制压缩比增大,TiC粒子的平均尺寸和最大尺寸均减小,同时其长宽比也减小,即等轴化程度增加,而且颗粒分布愈加均匀,从而显著改善材料的韧性。(2) 原奥氏体晶粒的细化。随着高钛耐磨钢原奥氏体晶粒的细化,具有大角界面的马氏体板条束和板条块尺寸也随之细化,钢中大角度界面密度增加,而解理裂纹穿过大角度晶界时会发生偏转,这一过程消耗能量,从而也提高了材料韧性。

高钛耐磨钢的非均匀延伸率随轧制变形量的增大而提高,显然也与大颗粒TiC的细化和均匀化有关。试样产生颈缩后,颈缩区域处于三向拉应力状态,将促进TiC的断裂和微裂纹的扩展,而TiC的细化和均匀化则能够在一定程度上延缓这一过程。此外原奥氏体晶粒尺寸的细化可使马氏体板条细化,延缓裂纹扩展,从而提升材料的塑性。钢的均匀延伸率是加工硬化率和流变应力的共同作用结果。根据拉伸失稳判据σε=θ (其中,σ为流变应力,ε为均匀延伸率,θ为加工硬化率)可知,在相同流变应力条件下,加工硬化率越高则均匀延伸率就越小;或者在相同加工硬化率条件下,流变应力(或强度)越低,则均匀延伸率也越大。具体到本工作中的高钛耐磨钢,随着轧制变形量增加,钢的强度升高,而均匀延伸率变化不大,因此可以推测其加工硬化率也在同时提高。根据Ashby[29]理论,在基体中引入硬质第二相将提高材料的加工硬化率,且加工硬化率与第二相体积分数的平方根成正比,而与其尺寸成反比。因此随着TiC的细化,高钛耐磨钢的加工硬化率也将提高,从而补偿了强度提高对均匀延伸率的不利影响,最终导致均匀延伸率基本保持不变。

4 结论

(1) 通过淬火加低温回火处理得到了马氏体基体组织+TiC颗粒增强相的复合组织。随着轧制变形量增加,高钛耐磨钢热处理后的原奥氏体晶粒尺寸从8.1 μm细化到了3.5 μm,铸态析出的微米级网状TiC逐渐细化和均匀化,同时尺寸小于15 nm的TiC颗粒占比增加。

(2) 随着轧制变形量的增大,高钛耐磨钢的强度、韧性和塑性均有提高:屈服强度、抗拉强度和总延伸率从压缩比为3∶1时的1202 MPa、1437 MPa和7.4%分别提高到压缩比为30∶1时的1311 MPa、1484 MPa和9.9%,而室温Charpy冲击功从压缩比为3∶1时的11 J大幅提高到压缩比为10∶1时的24 J。高钛耐磨钢在轧制压缩比为10∶1时即可获得良好的韧塑性,进一步增大压缩比对钢的韧塑性提升不明显。

(3) 通过对高钛耐磨钢各种强化方式的定量分析表明,采用沉淀强化和位错强化均方根叠加方式计算得到的屈服强度与实测值吻合较好,纳米级TiC的析出强化和晶界强化是造成高钛耐磨钢强度增加的主要原因。

(4) 高钛耐磨钢的韧性和塑性随强度的提高不降反升,主要是因为大颗粒TiC在轧制变形过程中发生细化和均匀化。

参考文献

Deng X T, Wang Z D, Han Y, et al.

Microstructure and abrasive wear behavior of medium carbon low alloy martensitic abrasion resistant steel

[J]. J. Iron Steel Res. Int., 2014, 21: 98

DOI      URL     [本文引用: 1]

Zhang K, Yong Q L, Sun X J, et al.

Effect of tempering temperature on microstructure and mechanical properties of high Ti microalloyed directly quenched high strength steel

[J]. Acta Metall. Sin., 2014, 50: 913

URL    

Over the past years, Ti microalloying technique has not been developed sufficiently compared to Nb and V. due to its special metallurgy characteristics. Higher chemical activity of Ti results in larger inclusions when Ti combines with O, N and S. In addition, higher temperature sensitivity of TiC precipitation leads to the instability of steel strips. Owning to the above reasons, the conventional high strength steels with the microstructure of martensite, bainite or the composite of the two were microalloyed with (0.01%similar to 0.03%)Ti (mass fraction) for austenite grain refinement during soaking. The addition of high Ti (>0.1%) in microalloyed high strength martensitic or bainitic steels were rarely touched upon. The effects of tempering temperature on the microstructure and mechanical properties of high Ti microalloyed directly quenched high strength steel were investigated by TEM, SEM and physical-chemical phase analysis. The results show that with the increase of tempering temperature, the tensile curve has an obvious turning point. The tensile strength gradually decreases first and then increases, while the yield strength increases slowly. At tempering temperature 600 degrees C, the experimental steel shows the best mechanical properties with tensile strength at 1043 MPa, yield strength at 1020 MPa and the elongation of 16%, while the Charpy impact energy is 67.7 J at -40 degrees C. The main reason is that the amount of nanometer precipitates reaches the maximum, their distributions are also relatively uniform and the size is significantly small. The solid solution strengthening and precipitation strengthening increment of the experiment steel tempering at 600 degrees C were about 149.82 and 171.72 MPa, respectively.

(张 可, 雍岐龙, 孙新军.

回火温度对高Ti微合金直接淬火高强钢组织及性能的影响

[J]. 金属学报, 2014, 50: 913)

URL    

利用TEM, SEM及物理化学相分析法, 研究了回火温度对高Ti微合金直接淬火高强钢显微组织和力学性能的影响. 结果表明, 随着回火温度的升高, 抗拉曲线出现明显的转折点, 抗拉强度先降低后升高, 而屈服强度缓慢升高. 回火温度为600 ℃时, 实验钢具有最佳的综合力学性能; 抗拉强度为1043 MPa, 屈服强度为1020 MPa, 延伸率为16%, -40 ℃冲击功为67.7 J. 其主要原因是600 ℃时, 纳米级的析出相数量最多, 体积分数最大, 分布最均匀. 600 ℃回火时, 实验钢的固溶强化和沉淀强化的强度增量分别约为149.82 和171.72 MPa.

Lindroos M, Valtonen K, Kemppainen A, et al.

Wear behavior and work hardening of high strength steels in high stress abrasion

[J]. Wear, 2015, 322-323: 32

DOI      URL    

Bressan J D, Daros D P, Sokolowski A, et al.

Influence of hardness on the wear resistance of 17-4 PH stainless steel evaluated by the pin-on-disc testing

[J]. J. Mater. Process. Technol., 2008, 205: 353

DOI      URL    

Ojala N, Valtonen K, Heino V, et al.

Effects of composition and microstructure on the abrasive wear performance of quenched wear resistant steels

[J]. Wear, 2014, 317: 225

DOI      URL     [本文引用: 1]

Wear resistant steels are commonly categorized by their hardness, and in the case of quenched wear resistant steels, their Brinell hardness grades are widely considered almost as standards. In this study, the abrasive wear performance of 15 commercially available 400 HB grade quenched wear resistant steels from all over the world were tested with granite gravel in high stress conditions. The aim was to evaluate the real wear performance of nominally similar steels. Also properties such as hardness, hardness profiles, microstructures and chemical compositions of the steels were studied and reasons for the differences in their wear performance further discussed. In terms of mass loss, over 50% differences were recorded in the abrasive wear performance of the studied steels. Variations in the chemical compositions were linked to the auto-tempered microstructures of the steels, and the microstructural characteristics were further linked to their ultimate wear behavior. (C) 2014 Elsevier B.V.

Srivastava A K, Das K.

Microstructure and abrasive wear study of (Ti,W)C-reinforced high-manganese austenitic steel matrix composite

[J]. Mater. Lett., 2008, 62: 3947

DOI      URL     [本文引用: 1]

Ni Z F, Sun Y S, Xue F, et al.

Evaluation of electroslag remelting in TiC particle reinforced 304 stainless steel

[J]. Mater. Sci. Eng., 2011, A528: 5664

Xu L J, Xing J D, Wei S Z, et al.

Study on relative wear resistance and wear stability of high-speed steel with high vanadium content

[J]. Wear, 2007, 262: 253

DOI      URL     [本文引用: 1]

Liu L J.

TiC precipitation behavior and its effect on properties in high titanium and high wear-resistant steels

[D]. Beijing: Central Iron & Steel Research Institute, 2019

[本文引用: 2]

(刘罗锦.

高钛高耐磨钢中TiC析出行为及对性能的影响

[D]. 北京: 钢铁研究总院, 2019)

[本文引用: 2]

Sun X J, Liu L J, Liang X K, et al.

TiC precipitation behavior and its effect on abrasion resistance of high titanium wear-resistant steel

[J]. Acta Metall. Sin., 2020, 56: 661

[本文引用: 5]

(孙新军, 刘罗锦, 梁小凯.

高钛耐磨钢中TiC析出行为及其对耐磨粒磨损性能的影响

[J]. 金属学报, 2020, 56: 661)

[本文引用: 5]

Liu L J, Liang X K, Liu J, et al.

Precipitation process of TiC in low alloy martensitic steel and its effect on wear resistance

[J]. ISIJ Int., 2020, 60: 168

DOI      URL     [本文引用: 1]

Jang J H, Lee C H, Heo Y U, et al.

Stability of (Ti, M)C (M=Nb, V, Mo and W) carbide in steels using first-principles calculations

[J]. Acta Mater., 2012, 60: 208

DOI      URL     [本文引用: 1]

The lattice parameters, formation energies and bulk moduli of (Ti,M)C and M(C,Va) with the B1 crystal structure have been investigated using first-principles calculations, where M = Nb, V, Mo and W. The replacement at 0 K of Ti by Mo or W in the TiC lattice is found to be energetically unfavorable with respect to the formation energy. However, it decreases the misfit strain between the carbide and ferrite matrix, a factor which is of critical importance during the early stages of precipitation, thus favoring the substitution of Ti by Mo, as is observed in practice. The effect of Mo in enhancing the coarsening resistance of (Ti,Mo)C precipitates is discussed in terms of its role in the nucleation process, but followed by a more passive contribution during coarsening itself. The role of tungsten has been predicted to have a similar effect to molybdenum on the nucleation and coarsening process. Analysis of precipitates in Ti-, Ti-Mo- and Ti-W-bearing steels shows results consistent with the calculations. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd.

Yu H L.

Evolution behavior of cracks and inclusions in slab during rolling

[D]. Shenyang: Northeastern University, 2008

[本文引用: 1]

(喻海良.

轧制过程中轧件裂纹和夹杂物演变行为研究

[D]. 沈阳: 东北大学, 2008)

[本文引用: 1]

Weng Y Q. Ultra-Fine Grained Steels [M]. Beijing: Metallurgical Industry Press, 2003: 1

[本文引用: 1]

(翁宇庆. 超细晶钢 [M]. 北京: 冶金工业出版社, 2003: 1)

[本文引用: 1]

Liang X K, Sun X J, Yong Q L, et al.

Precipitation of TiC in high Ti steel

[J]. J. Iron Steel Res., 2016, 28(9): 71

[本文引用: 1]

(梁小凯, 孙新军, 雍岐龙.

高钛钢中TiC析出机制

[J]. 钢铁研究学报, 2016, 28(9): 71)

[本文引用: 1]

Yong Q L. Secondary Phases in Steels [M]. Beijing: Metallurgical Industry Press, 2006: 1

[本文引用: 3]

(雍岐龙. 钢铁材料中的第二相 [M]. 北京: 冶金工业出版社, 2006: 1)

[本文引用: 3]

Gladman T.

Precipitation hardening in metals

[J]. Mater. Sci. Technol., 1999, 15: 30

DOI      URL     [本文引用: 1]

Cooman B C, Speer J G. Strengthening Mechanisms [M]. Warrendale: Fundamentals of Steel Product Metallurgy, 2011: 270

[本文引用: 1]

Kennett S C, Krauss G, Findley K O.

Prior austenite grain size and tempering effects on the dislocation density of low-C Nb-Ti microalloyed lath martensite

[J]. Scr. Mater., 2015, 107: 123

DOI      URL     [本文引用: 1]

Klemm-Toole J, Benz J, Thompson S W, et al.

A quantitative evaluation of microalloy precipitation strengthening in martensite and bainite

[J]. Mater. Sci. Eng., 2019, A763: 138145

[本文引用: 2]

Akbary F H, Sietsma J, Böttger A J, et al.

An improved X-ray diffraction analysis method to characterize dislocation density in lath martensitic structures

[J]. Mater. Sci. Eng., 2015, A639: 208

[本文引用: 1]

Morito S, Nishikawa J, Maki T.

Dislocation density within lath martensite in Fe-C and Fe-Ni alloys

[J]. ISIJ Int., 2003, 43: 1475

DOI      URL     [本文引用: 1]

Kehoe M, Kelly P M.

The role of carbon in the strength of ferrous martensite

[J]. Scr. Metall., 1970, 4: 473

DOI      URL     [本文引用: 1]

Kobayashi Y, Takahashi J, Kawakami K.

Experimental evaluation of the particle size dependence of the dislocation-particle interaction force in TiC-precipitation-strengthened steel

[J]. Scr. Mater., 2012, 67: 854

DOI      URL     [本文引用: 1]

Petch N J.

The cleavage strength of polycrystals

[J]. J. Iron Steel Inst., 1953, 174: 25

[本文引用: 1]

Petch N J.

The ductile-brittle transition in the fracture of α-iron: I

[J]. Philos. Mag., 1958, 34: 1089

[本文引用: 1]

Wang C F.

Study on structure control unit of strength and toughness of low alloy martensitic steel

[D]. Beijing: Central Iron & Steel Research Institute, 2008

[本文引用: 1]

(王春芳.

低合金马氏体钢强韧性组织控制单元的研究

[D]. 北京: 钢铁研究总院, 2008)

[本文引用: 1]

Kocks U F.

Superposition of alloy hardening, hardening strain, and dynamic recovery

[A]. Proc. 5th Int. Conf. Strength of Metals and Alloys [C]. Oxford: Peramon Press, 1979: 1661

[本文引用: 1]

Ashby M F.

The deformation of plastically non-homogeneous materials

[J]. Philos. Mag., 1970, 21: 399

[本文引用: 1]

/