Please wait a minute...
Acta Metall Sin  1998, Vol. 34 Issue (12): 1255-1260    DOI:
Current Issue | Archive | Adv Search |
CYCLIC DEFORMATION BEHMIOR AND FATIGUE CRACK INITIATION IN COPPER BICRVSTALS
HU Yunming;WANG Zhongguang(State Key Laboratory for Fatigue and Fracture of Materials; Institute of Metal Research; The Chinese Academyof Sciences; Shenyang 110015)Correspondent; HU Yunming; Tel: (024)23843531-55gg5; Fax: (024)23891s20Manuscript received 1997-12-17; in revised form 1998-01-30
Cite this article: 

HU Yunming;WANG Zhongguang(State Key Laboratory for Fatigue and Fracture of Materials; Institute of Metal Research; The Chinese Academyof Sciences; Shenyang 110015)Correspondent; HU Yunming; Tel: (024)23843531-55gg5; Fax: (024)23891s20Manuscript received 1997-12-17; in revised form 1998-01-30. CYCLIC DEFORMATION BEHMIOR AND FATIGUE CRACK INITIATION IN COPPER BICRVSTALS. Acta Metall Sin, 1998, 34(12): 1255-1260.

Download:  PDF(2499KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The fatigue cracking behavior and mechanisms in three types of [34] iso-axialcopper bicrystals have been studied by using scanning electron microscopy (SEM). One bicrystalcontains a grain boundary (GB) perpendicular to the loading direction and the two others containtilting GBs. The experimental results show that the intergranular fatigue cracking is the mainmode in the fatigue failure for the three types of copper bicrystals. However, the fatigue craCkingmechanisms are different for the perpendicular GB bicrystal and the tilting GB bicrystals. Theintergranular fatigue cracks are mainly formed by impingement of persistent slip bands againstthe GB in the perpendicular GB bicrystal. While the fatigue cracking initiation is predominatelydetermined by the stress concentration resulted from steps for the tilting GB bicrystal. The foregoing difference between the fatigue cracking initiation mechanisms in the two types of bicrystalsis closely related to the specimens geometry with respect to the primary slip systems.
Key words:  copper bicrystal      grain boundary      fatigue cracking     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1998/V34/I12/1255

1 Kim W H, Laird C Acta Metall, 1978; 26: 777
2 Kim W H, Laird C Acta Metall, 1978; 26: 789
3 Lim L C. Acta Metal 1986; 35: 1653
4Figueroa J C,Laird C.Mater Sci Eng,1983;60:45
5 Llanes L, Laird C. Mater Sci Eng, 1992; 57A: 21
6 Katsgirik K, Omura A, Koyanagik, Awatani J, Shiraishi T, Kaneshiro. Metall Trans , 1977; SA: 1769
7 Mughrabi H; Wang R, Differt K, Essmann U. ASTM STP 811, 1983: 5
8 Liu W,Bayerlein M ,Mughrabi H,Day A,Quested P N Acta Metall Mater,1992;40:1963
9 Christ H J Mate, Sci Eng, 1989 All7: L25
10刘蔚中国科学院金属研究所硕士学位论文,1987 (Liu w.Master Disertation Institute of Metal Reserch,The Chinese Academy of Sciences,1987)
11胡运明,王中光金属学报,19972 33:824 (Hu Y M, Wang Z G Acta Metall Sin, 1997; 33: 824)
12胡运明,王中光.金属学报,1997;33:814 (Hu Y M, Wang Z G. Acta Metall Sin.1997; 33: 814)O
[1] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[2] XU Yongsheng, ZHANG Weigang, XU Lingchao, DAN Wenjiao. Simulation of Deformation Coordination and Hardening Behavior in Ferrite-Ferrite Grain Boundary[J]. 金属学报, 2023, 59(8): 1042-1050.
[3] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
[4] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[5] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[6] YANG Du, BAI Qin, HU Yue, ZHANG Yong, LI Zhijun, JIANG Li, XIA Shuang, ZHOU Bangxin. Fractal Analysis of the Effect of Grain Boundary Character on Te-Induced Brittle Cracking in GH3535 Alloy[J]. 金属学报, 2023, 59(2): 248-256.
[7] LI Xin, JIANG He, YAO Zhihao, DONG Jianxin. Theoretical Calculation and Analysis of the Effect of Oxygen Atom on the Grain Boundary of Superalloy Matrices Ni, Co and NiCr[J]. 金属学报, 2023, 59(2): 309-318.
[8] LIU Lujun, LIU Zheng, LIU Renhui, LIU Yong. Grain Boundary Structure and Coercivity Enhancement of Nd90Al10 Alloy Modified NdFeB Permanent Magnets by GBD Process[J]. 金属学报, 2023, 59(11): 1457-1465.
[9] WANG Jiangwei, CHEN Yingbin, ZHU Qi, HONG Zhe, ZHANG Ze. Grain Boundary Dominated Plasticity in Metallic Materials[J]. 金属学报, 2022, 58(6): 726-745.
[10] LI Haiyong, LI Saiyi. Effect of Temperature on Migration Behavior of <111> Symmetric Tilt Grain Boundaries in Pure Aluminum Based on Molecular Dynamics Simulations[J]. 金属学报, 2022, 58(2): 250-256.
[11] HU Biao, ZHANG Huaqing, ZHANG Jin, YANG Mingjun, DU Yong, ZHAO Dongdong. Progress in Interfacial Thermodynamics and Grain Boundary Complexion Diagram[J]. 金属学报, 2021, 57(9): 1199-1214.
[12] LIU Zhongwu, HE Jiayi. Several Issues on the Development of Grain Boundary Diffusion Process for Nd-Fe-B Permanent Magnets[J]. 金属学报, 2021, 57(9): 1155-1170.
[13] NI Ke, YANG Yinhui, CAO Jianchun, WANG Liuhang, LIU Zehui, QIAN Hao. Softening Behavior of 18.7Cr-1.0Ni-5.8Mn-0.2N Low Nickel-Type Duplex Stainless Steel During Hot Compression Deformation Under Large Strain[J]. 金属学报, 2021, 57(2): 224-236.
[14] SUN Jia, LI Xuexiong, ZHANG Jinhu, WANG Gang, YANG Mei, WANG Hao, XU Dongsheng. Phase Field Modeling of Formation Mechanism of Grain Boundary Allotriomorph in βα Phase Transformation in Ti-6Al-4V Alloy[J]. 金属学报, 2020, 56(8): 1113-1122.
[15] LI Xiucheng,SUN Mingyu,ZHAO Jingxiao,WANG Xuelin,SHANG Chengjia. Quantitative Crystallographic Characterization of Boundaries in Ferrite-Bainite/Martensite Dual-Phase Steels[J]. 金属学报, 2020, 56(4): 653-660.
No Suggested Reading articles found!