Please wait a minute...
Acta Metall Sin  2020, Vol. 56 Issue (8): 1113-1122    DOI: 10.11900/0412.1961.2019.00392
Current Issue | Archive | Adv Search |
Phase Field Modeling of Formation Mechanism of Grain Boundary Allotriomorph in βα Phase Transformation in Ti-6Al-4V Alloy
SUN Jia1,2, LI Xuexiong1, ZHANG Jinhu1, WANG Gang3, YANG Mei4, WANG Hao1,5, XU Dongsheng1,5()
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
3 School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China
4 School of Materials Engineering, Jiangsu University of Technology, Changzhou 213001, China
5 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
Cite this article: 

SUN Jia, LI Xuexiong, ZHANG Jinhu, WANG Gang, YANG Mei, WANG Hao, XU Dongsheng. Phase Field Modeling of Formation Mechanism of Grain Boundary Allotriomorph in βα Phase Transformation in Ti-6Al-4V Alloy. Acta Metall Sin, 2020, 56(8): 1113-1122.

Download:  HTML  PDF(2144KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The microstructure evolution with grain boundary wetting phase transformation of α allotriomorph during the βα phase transformation in Ti-6Al-4V alloy has been investigated by means of phase field modeling. A realistic microstructure was generated by coupling the Thermo-Calc thermodynamic parameters and phase field evolution equations. It is shown that the specially constructed thermal noise terms disturb the β/β interfaces and can produce heterogeneous nucleation of α phase at energetically favorable points such as triple junctions and β grain boundaries (GBs). A small amount of αGB (grain boundary α) nuclei formed at the early stage of phase transition would lead to the formation of discontinuous αGB; while a large number of αGB nuclei can result in the formation of continuous αGB. GBs can be "wetted" by a second solid phase through the reversible transition from incomplete to complete solid state wetting at a certain temperature without a new reaction. The volume fraction of α phase and the grain number increased gradually as the noise amplitude increased from 0.05 to 0.11, or noise duration from 50 s to 80 s. Both noise amplitude and time could control the formation kinetics of αGB, which will influence the microstructure, and the fatigue properties of Ti alloys can be altered if these are controlled experimentally.

Key words:  Ti-6Al-4V      phase field model      thermal noise term      αGB      grain boundary wetting     
Received:  18 November 2019     
ZTFLH:  TG146.22  
Fund: National Key Research and Development Program of China(2016YFB0701304);Strategic Priority Research Program of Chinese Academy of Sciences(XDC01040100);Special Informatization Project of Chinese Academy of Sciences(XXH13506-304);National Natural Science Foundation of China(51671195)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2019.00392     OR     https://www.ams.org.cn/EN/Y2020/V56/I8/1113

ParameterValueUnit
r[-0.5,0.5]
ξnoise0.05, 0.07, 0.09, 0.11
tnoise50,60,70,80s
R8.314J·mol-1·K-1
T1213K

σ

ω

0.0362

0.00036

J·m-2
W0.5×10-6m
a12/3
κ0.001814

Mij

L

1.0×10-18

80

Δt0.1s
Δx5×10-8m
Table 1  Simulation parameters in phase field model
Fig.1  Simulated microstructures at different time steps with thermal noise (The color scales in the corresponding figures represent the values of the order parameter, the same below)
Color online
(a) t=0 s (b) t=50 s (c) t=65 s (d) t=90 s
Fig.2  Simulation microstructure without thermal noise (a) and volume fractions of α with and without thermal noise (b)
Color online
Fig.3  Local zoomed-in view of microstructure in Fig.1d (a) and the corresponding concentration profiles of Al and V along the line AB (b)
Color online
Fig.4  Local zoomed-in view of microstructures of continuous αGB under the condition ξnoise=0.05 and tnoise=50 s at t=55 s (a), t=60 s (b), t=65 s (c), t=70 s (d), t=75 s (e) and t=80 s (f)
Color online
Fig.5  Local zoomed-in view of microstructures of incontinuous αGB under the condition ξnoise=0.05 and tnoise=50 s at t=55 s (a), t=60 s (b), t=65 s (c), t=70 s (d), t=75 s (e) and t=80 s (f)
Color online
Fig.6  Scheme showing the evolution from incomplete to complete grain boundary wetting phase transition caused by second solid phase
Fig.7  Simulation microstructure at ξnoise=0.11 (a) and phase fractions of α when ξnoise=0.05, 0.07, 0.09 and 0.11 (b) under the condition of tnoise=50 s
Color online
Fig.8  Simulation microstructure at tnoise=80 s (a) and phase fractions of α when tnoise=40, 50, 60, 70 and 80 s (b) when ξnoise=0.05
Color online
[1] Geetha M, Singh A K, Asokamani R, et al. Ti based biomaterials, the ultimate choice for orthopaedic implants—A review [J]. Prog. Mater. Sci., 2009, 54: 397
doi: 10.1016/j.pmatsci.2008.06.004
[2] Shi R, Wang Y. Variant selection during α precipitation in Ti-6Al-4V under the influence of local stress—A simulation study [J]. Acta Mater., 2013, 61: 6006
doi: 10.1016/j.actamat.2013.06.042
[3] Gornakova A S, Prokofiev S I, Straumal B B, et al. Growth of (αTi) grain-boundary layers in Ti-Co alloys [J]. Russ. J. Non-Ferrous Met., 2016, 57: 703
doi: 10.3103/S1067821216070099
[4] Egorova Y B, Il'in A A, Kolachev B A, et al. Effect of the structure on the cutability of titanium alloys [J]. Met. Sci. Heat Treat., 2003, 45: 134
doi: 10.1023/A:1024527807272
[5] Fishgoit A V, Maistrov V M, Il'in A A, et al. Interaction of short cracks with the structure of metals [J]. Sov. Mater. Sci., 1990, 25: 571
doi: 10.1007/BF00727082
[6] Bobovnikov V N, Luk'yanenko V V, Fishgoit A V. Effect of particles of the insoluble phase Al9FeNi on the kinetics of fatigue crack propagation in alloy Ak4-1 [J]. Met. Sci. Heat Treat., 1982, 24: 191
doi: 10.1007/BF01166851
[7] Kolachev B A, Lyasotskaya V S. Correlation between diagrams of isothermal and anisothermal transformations and phase composition diagram of hardened titanium alloys [J]. Met. Sci. Heat Treat., 2003, 45: 119
doi: 10.1023/A:1024571622294
[8] Straumal B B, Baretzky B, Kogtenkova O A, et al. Wetting of grain boundaries in Al by the solid Al3Mg2 phase [J]. J. Mater. Sci., 2010, 45: 2057
doi: 10.1007/s10853-009-4014-6
[9] Lütjering G, Williams J C. Titanium [M]. Berlin, Heidelberg: Springer-Verlag, 2007: 1
[10] Beeler J R. Computer experiments on point defect configurations and energies in Ti-M systems [J]. JOM, 1968, 20(1): 383
[11] Lütjering G. Influence of processing on microstructure and mechanical properties of (α+β) titanium alloys [J]. Mater. Sci. Eng., 1998, A243: 32
[12] Banerjee D, Williams J C. Perspectives on titanium science and technology [J]. Acta Mater., 2013, 61: 844
doi: 10.1016/j.actamat.2012.10.043
[13] Furuhara T, Aaronson H I. Crystallography and interfacial structure of proeutectoid α grain boundary allotriomorphs in a hypoeutectoid Ti-Cr alloy [J]. Acta Metall. Mater., 1991, 39: 2887
doi: 10.1016/0956-7151(91)90105-A
[14] Liu C M, Wang H M, Tian X J, et al. Development of a pre-heat treatment for obtaining discontinuous grain boundary α in laser melting deposited Ti-5Al-5Mo-5V-1Cr-1Fe alloy [J]. Mater. Sci. Eng., 2014, A604: 176
[15] Gornakova A S, Straumal B B, Nekrasov A N, et al. Grain boundary wetting by a second solid phase in Ti-Fe alloys [J]. J. Mater. Eng. Perform., 2018, 27: 4989
doi: 10.1007/s11665-018-3300-3
[16] Heo T W, Zhang L, Du Q, et al. Incorporating diffuse-interface nuclei in phase-field simulations [J]. Scr. Mater., 2010, 63: 8
doi: 10.1016/j.scriptamat.2010.02.028
[17] Karma A, Rappel W J. Phase-field model of dendritic sidebranching with thermal noise [J]. Phys. Rev., 1999, 60E: 3614
[18] Karma A. Fluctuations in solidification [J]. Phys. Rev., 1993, 48E: 3441
[19] Hubert J, Cheng M, Emmerich H. Effect of noise-induced nucleation on grain size distribution studied via the phase-field crystal method [J]. J. Phys. Condens. Matter, 2009, 21: 464108
doi: 10.1088/0953-8984/21/46/464108
[20] Kim S G, Kim W T, Suzuki T. Phase-field model for binary alloys [J]. Phys. Rev., 1999, 60E: 7186
[21] Kundin J, Pogorelov E, Emmerich H. Phase-field modeling of the microstructure evolution and heterogeneous nucleation in solidifying ternary Al-Cu-Ni alloys [J]. Acta Mater., 2015, 83: 448
doi: 10.1016/j.actamat.2014.09.057
[22] Ovid'ko I A. Deformation and diffusion modes in nanocrystalline materials [J]. Int. Mater. Rev., 2005, 50: 65
doi: 10.1179/174328005X14294
[23] Bronchart Q, Le Bouar Y, Finel A. New coarse-grained derivation of a phase field model for precipitation [J]. Phys. Rev. Lett., 2008, 100: 015702
pmid: 18232784
[24] Gránásy L, Pusztai T, Warren J A. Modelling polycrystalline solidification using phase field theory [J]. J. Phys. Condens. Matter, 2004, 16: R1205
[25] Wynblatt P, Chatain D. Solid-state wetting transitions at grain boundaries [J]. Mater. Sci. Eng., 2008, A495: 119
[26] McEldowney D J, Tamirisakandala S, Miracle D B. Heat-treatment effects on the microstructure and tensile properties of powder metallurgy Ti-6Al-4V alloys modified with boron [J]. Metall. Mater. Trans., 2010, 41A: 1003
[27] Chen Y Y, Du Z X, Xiao S L, et al. Effect of aging heat treatment on microstructure and tensile properties of a new β high strength titanium alloy [J]. J. Alloys Compd., 2014, 586: 588
doi: 10.1016/j.jallcom.2013.10.096
[28] Nag S, Banerjee R, Stechschulte J, et al. Comparison of microstructural evolution in Ti-Mo-Zr-Fe and Ti-15Mo biocompatible alloys [J]. J. Mater. Sci. Mater. Med., 2005, 16: 679
pmid: 15965601
[29] Sun Z C, Li X S, Wu H L, et al. A unified growth model of the secondary grain boundary α phase in TA15 Ti-alloy [J]. J. Alloys Compd., 2016, 689: 693
doi: 10.1016/j.jallcom.2016.08.013
[30] Guo W, Spatschek R, Steinbach I. An analytical study of the static state of multi-junctions in a multi-phase field model [J]. Physica, 2011, 240D: 382
[31] Fisher J C. Calculation of diffusion penetration curves for surface and grain boundary diffusion [J]. J. Appl. Phys., 1951, 22: 74
doi: 10.1063/1.1699825
[32] Liu C M, Lu Y, Tian X J, et al. Influence of continuous grain boundary α on ductility of laser melting deposited titanium alloys [J]. Mater. Sci. Eng., 2016, A661: 145
[33] Liu C M, Yu L, Zhang A L, et al. Beta heat treatment of laser melting deposited high strength near β titanium alloy [J]. Mater. Sci. Eng., 2016, A673: 185
[34] Foltz J W, Welk B, Collins P C, et al. Formation of grain boundary α in β Ti alloys: Its role in deformation and fracture behavior of these alloys [J]. Metall. Mater. Trans., 2011, 42A: 645
[35] Lütjering G, Albrecht J, Sauer C, et al. The influence of soft, precipitate-free zones at grain boundaries in Ti and Al alloys on their fatigue and fracture behavior [J]. Mater. Sci. Eng., 2007, A468-470: 201
[36] Liu C Y, Gu W Y, Kong D J, et al. The significant effects of the alkali-metal cations on ZSM-5 zeolite synthesis: From mechanism to morphology [J]. Microporous Mesoporous Mater., 2014, 183: 30
doi: 10.1016/j.micromeso.2013.08.037
[37] Wang Y, Zhang S Q, Tian X J, et al. High-cycle fatigue crack initiation and propagation in laser melting deposited TC18 titanium alloy [J]. Int. J. Miner. Metall. Mater., 2013, 20: 665
doi: 10.1007/s12613-013-0781-9
[38] Straumal B B, Kogtenkova O A, Murashkin M Y, et al. Grain boundary wetting transition in Al-Mg alloys [J]. Mater. Lett., 2017, 186: 82
doi: 10.1016/j.matlet.2016.09.088
[39] Protasova S G, Kogtenkova O A, Straumal B B, et al. Inversed solid-phase grain boundary wetting in the Al-Zn system [J]. J. Mater. Sci., 2011, 46: 4349
doi: 10.1007/s10853-011-5322-1
[40] Zhu C S, Liu B C, Jing T, et al. Dependence of dendritic side-branches on parameters in phase-field simulations [J]. Mater. Trans., 2005, 46: 15
doi: 10.2320/matertrans.46.15
[41] Elder K R, Katakowski M, Haataja M, et al. Modeling elasticity in crystal growth [J]. Phys. Rev. Lett., 2002, 88: 245701
doi: 10.1103/PhysRevLett.88.245701 pmid: 12059316
[42] Straumal B B, Gornakova A S, Kogtenkova O A, et al. Continuous and discontinuous grain-boundary wetting in ZnxAl1-x [J]. Phys. Rev., 2008, 78B: 054202
[43] Kundin J, Chen H L, Siquieri R, et al. Investigation of the heterogeneous nucleation in a peritectic AlNi alloy [J]. Eur. Phys. J. Plus, 2011, 126: 96
doi: 10.1140/epjp/i2011-11096-6
[44] Kundin J, Wang P, Emmerich H, et al. Investigation of Al-Cu-Ni alloy solidification: Thermodynamics, experiments and phase-field modeling [J]. Eur. Phys. J. Spec. Top., 2014, 223: 567
doi: 10.1140/epjst/e2014-02110-6
[1] FAN Yongxia, WANG Jian, ZHANG Xuezhe, WANG Jianzhong, TANG Huiping. Mechanical Property of Shell Minimal Surface Lattice Material Printed by SEBM[J]. 金属学报, 2021, 57(7): 871-879.
[2] SUN Zhengyang, YANG Chao, LIU Wenbo. Phase Field Simulations of the Sintering Process of UO2[J]. 金属学报, 2020, 56(9): 1295-1303.
[3] Jiang XU, Xike BAO, Shuyun JIANG. In Vitro Corrosion Resistance of Ta2N Nanocrystalline Coating in Simulated Body Fluids[J]. 金属学报, 2018, 54(3): 443-456.
[4] Peng JIN,Ran SUI,Fuxiang LI,Weiyuan YU,Qiaoli LIN. Reactive Wetting of TC4 Titanium Alloy by Molten 6061 Al and 4043 Al Alloys[J]. 金属学报, 2017, 53(4): 479-486.
[5] Jinhu ZHANG,Dongsheng XU,Yunzhi WANG,Rui YANG. INFLUENCES OF DISLOCATIONS ON NUCLEATION AND MICRO-TEXTURE FORMATION OFα PHASE IN Ti-6Al-4V ALLOY[J]. 金属学报, 2016, 52(8): 905-915.
[6] Xiaolong LIU,Chengqi SUN,Yantian ZHOU,Youshi HONG. EFFECTS OF MICROSTRUCTURE AND STRESS RATIO ON HIGH-CYCLE AND VERY-HIGH-CYCLE FATIGUE BEHAVIOR OF Ti-6Al-4V ALLOY[J]. 金属学报, 2016, 52(8): 923-930.
[7] Lina ZHU,Caiyan DENG,Dongpo WANG,Shengsun HU. EFFECT OF SURFACE ROUGHNESS ON VERY HIGH CYCLE FATIGUE BEHAVIOR OF Ti-6Al-4V ALLOY[J]. 金属学报, 2016, 52(5): 583-591.
[8] WU Yan, ZONG Yaping,ZHANG Xiangang. MICROSTRUCTURE EVOLUTION OF NANOCRYSTALLINE AZ31 MAGNESIUM ALLOY BY PHASE FIELD SIMULATION[J]. 金属学报, 2013, 49(7): 789-796.
[9] GAO Yingjun LUO Zhirong HUANG Lilin HU Xiangying. PHASE FIELD MODEL FOR MICROSTRUCTURE EVOLUTION OF SUBGRAIN IN DEFORMATION ALLOY[J]. 金属学报, 2012, 48(10): 1215-1222.
[10] GAO Yingjun LUO Zhirong HU Xiangying HUANG Chuanggao. PHASE FIELD SIMULATION OF STATIC RECRYSTALLIZATION FOR AZ31 Mg ALLOY[J]. 金属学报, 2010, 46(10): 1161-1172.
[11] GONG Bo; LAI Zuhan (Northeast University of Technology; Shenyang); NIINOMI Mitsuo; KOBAYASHI Toshiro (Toyohashi University of Technology; Japan). IMPROVEMENT IN TENSILE PROPERTIES OF α+β TYPE Ti ALLOYS BY HYDROGEN TREATMENT[J]. 金属学报, 1992, 28(10): 11-14.
[12] XU Zhensheng;GONG Bo;ZHANG Caibei;LAI Zuhan Northeast University of Technology; Shenyang. EFFECT OF HYDROGEN ON HIGH TEMPERATUREPLASTICITY OF Ti-6Al-4V ALLOY[J]. 金属学报, 1991, 27(4): 26-29.
[13] ZHAO Linruo;ZHANG Shaoqing;YAN Minggao Beijing Institute of Aeronautical Materials Lab. NoA; Beijing Institute of Aeronauticol Materials;Beijing 100095. SLIP SYSTEMS AND DISLOCATION DISTRIBUTION CHARACTERISTICS IN α-PHASE OF SUPERPLASTICALLY DEFORMED Ti-6Al-4V ALLOY[J]. 金属学报, 1990, 26(1): 26-31.
No Suggested Reading articles found!