Please wait a minute...
Acta Metall Sin  1998, Vol. 34 Issue (7): 673-677    DOI:
Current Issue | Archive | Adv Search |
ELECTRONIC STRVCTURE ANALYSIS OF PRIMARY SLIP PLANES IN HEXAGONAL CLOSE-PACKED METALS
SONG Yan; YANG Rui; LI Dong; HU Zhuangqi(Institute of Metal Research; The Chinese Academy of Sciences; Shenyang 110015)
Cite this article: 

SONG Yan; YANG Rui; LI Dong; HU Zhuangqi(Institute of Metal Research; The Chinese Academy of Sciences; Shenyang 110015). ELECTRONIC STRVCTURE ANALYSIS OF PRIMARY SLIP PLANES IN HEXAGONAL CLOSE-PACKED METALS. Acta Metall Sin, 1998, 34(7): 673-677.

Download:  PDF(476KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Based on the electronic structure theory, the electronic structure and some parameters were calculated for hop metals by using the discrete variational Xa cluster method,and the intrinsic relationship between the interaction parameters and the properties of materials was discussed. A criterion of the choice of primary slip planes for hop metals was advanced by using the electronic structure theory. The primary slip planes are (0001) for Zr, Cd, Co, Be;{1010} for Ti, Zr, Mg, and both of (0001) and {1010} for Y and Sc at low temperattire. The conclusions are in agreement with experimental observations.
Key words:  electronic structure      slip      deformation      hcp metal     
Received:  18 July 1998     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1998/V34/I7/673

1 Roy R B. Philos Mag, 1976, 14. 477
2 Ellis D E, Painter G S. Phys Rev, 1970; B2: 2887
3 Guenzburger D, Ellis D E. Phys Rev Lett, 1991; 67: 3832
4 Kang Y-S, Tanaka I, Adachi H, Park S J. Jpn J Appl Phys, 1996; 35: L1614
5 Xu D S, Song Y, Li D, Hu Z Q. Philos Mag, 1997; A75: 1185
6 Xu D S, Song Y, Li D, Hu Z Q. Mater Sci Egg, 1997; A234-236: 230
7 Song Y, Xu D S, Yang R, Li D, Hu Z Q. Intermetallics, 1998; 6: 157
8王志中,李向东半经验分子轨道理论与实践北京:科学出版社,1981:170
(Wang Zhizhong,Li Xiangdong Theory and Practice of Semi-Empirical Molecular Orbitals.Beijing:Sciences Press, 1981: 170)9 Averill F W Ellis D E J Chem Phys, 1973; 59: 6412
10李俊清量子化学中的Xa。方法及应用合肥:安徽科学技术出版社,1984:139
(Li Junqing. The Xa Method and Its Application in Quantum Chemistry.Hefei:Anhui Sciences and Technology Press; 1984: 139)
11 李振寰元素性质数据手册石家庄:河北人民出版社,1985:12
(Li Zhenhuan.Handbook of Data of Chemical Elements.Shijiazhuang:Hebei People's Publishing House,1985:12)
12 Gilman J J. Trans Metall Soc AIME, 1961; 221. 456
13 Gilman J J. Trans Metall Soc AIME, 1956; 206: 1326
14 Akhtar A, Teghtsoonian A. Acta Metall, 1971; 19: 655
15 Handbook Committee of American Society for Metals. Metals Handbook. Vol. II, 9th ed, Metals Park, Ohio:ASM, 1979: 7071
[1] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
[3] XU Yongsheng, ZHANG Weigang, XU Lingchao, DAN Wenjiao. Simulation of Deformation Coordination and Hardening Behavior in Ferrite-Ferrite Grain Boundary[J]. 金属学报, 2023, 59(8): 1042-1050.
[4] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[5] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] ZHANG Lu, YU Zhiwei, ZHANG Leicheng, JIANG Rong, SONG Yingdong. Thermo-Mechanical Fatigue Cycle Damage Mechanism and Numerical Simulation of GH4169 Superalloy[J]. 金属学报, 2023, 59(7): 871-883.
[7] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[8] LIU Junpeng, CHEN Hao, ZHANG Chi, YANG Zhigang, ZHANG Yong, DAI Lanhong. Progress of Cryogenic Deformation and Strengthening-Toughening Mechanisms of High-Entropy Alloys[J]. 金属学报, 2023, 59(6): 727-743.
[9] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
[10] WAN Tao, CHENG Zhao, LU Lei. Effect of Component Proportion on Mechanical Behaviors of Laminated Nanotwinned Cu[J]. 金属学报, 2023, 59(4): 567-576.
[11] ZHANG Zhefeng, LI Keqiang, CAI Tuo, LI Peng, ZHANG Zhenjun, LIU Rui, YANG Jinbo, ZHANG Peng. Effects of Stacking Fault Energy on the Deformation Mechanisms and Mechanical Properties of Face-Centered Cubic Metals[J]. 金属学报, 2023, 59(4): 467-477.
[12] LI Min, WANG Jijie, LI Haoze, XING Weiwei, LIU Dezhuang, LI Aodi, MA Yingche. Effect of Y on the Solidification Microstructure, Warm Compression Behavior, and Softening Mechanism of Non-Oriented 6.5%Si Electrical Steel[J]. 金属学报, 2023, 59(3): 399-412.
[13] JI Xiumei, HOU Meiling, WANG Long, LIU Jie, GAO Kewei. Modeling and Application of Deformation Resistance Model for Medium and Heavy Plate Based on Machine Learning[J]. 金属学报, 2023, 59(3): 435-446.
[14] HAN Dong, ZHANG Yanjie, LI Xiaowu. Effect of Short-Range Ordering on the Tension-Tension Fatigue Deformation Behavior and Damage Mechanisms of Cu-Mn Alloys with High Stacking Fault Energies[J]. 金属学报, 2022, 58(9): 1208-1220.
[15] TIAN Ni, SHI Xu, LIU Wei, LIU Chuncheng, ZHAO Gang, ZUO Liang. Effect of Pre-Tension on the Fatigue Fracture of Under-Aged 7N01 Aluminum Alloy Plate[J]. 金属学报, 2022, 58(6): 760-770.
No Suggested Reading articles found!