Please wait a minute...
Acta Metall Sin  1998, Vol. 34 Issue (7): 713-718    DOI:
Current Issue | Archive | Adv Search |
MICROYIELD BEHAVIOURS OF SiCp/2024A1 COMPOSITE AND 2024A1 ALLOY
ZHANG Fan; LI Xiaocui; JIN Cheng; QIU Jiming; HU Zhengjun(The State Key Laboratory of Metal Matrix Composites; Shanghai Jiaotong University; Shanghai 200030)
Cite this article: 

ZHANG Fan; LI Xiaocui; JIN Cheng; QIU Jiming; HU Zhengjun(The State Key Laboratory of Metal Matrix Composites; Shanghai Jiaotong University; Shanghai 200030). MICROYIELD BEHAVIOURS OF SiCp/2024A1 COMPOSITE AND 2024A1 ALLOY. Acta Metall Sin, 1998, 34(7): 713-718.

Download:  PDF(1285KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  microyield behaviours of SiCp/2024A1 composite and its matrix alloy were investigated in this work. The results indicated that the composite showed quite different strain relaxation before" general" microyielding and its microyield mechanism was not same as that of the matrix alloy. It was also showed that during aging treatment, the microyield strengths of both composite and matrix alloy were dependent to precipitation of the strengthening phase,S', and exhibited a peak aging trend. Thermal cycling treatment could improve the microyield strength of the matrix alloy, but lower the microyield strength of the composite.
Key words:  microyield      SiCp/2024A1      2024A1      heat treatment      strain relaxation     
Received:  18 July 1998     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1998/V34/I7/713

1 Mohn W R, Vukoratovic D. SAMPE J, 1988; (1/2): 1
2 Hamann R, Gobin P F, Fougeres R. Scr Metall Mater 1990; 24: 1789
3李志林,姚忠凯兵器材料科学与工程,1991;(11):1(Li Zhilin, Yao Zhongkai. Ordance Mate, Sci Eng, 1991(11):1)
4李义春,安希镛、中国有色金属学报,1992;2(3):76(Li Yichun; An Xiyong.Chin J Nonferrous Met, 1992; 2(3): 76)
5 Croucher T, Butler D. Heat Treat,1980;(9): 24
6 Hunsicker H Y. Metall Trans, 1980; 11A: 759
7张帆,李小璀,钟锋,金城 热加工工艺,1997;(3):31 (Zhang Fan,Li Xiaocui,Zhong Feng,Jin Cheng.Hot Work Technol,1997(3):31)
8 Carnahan R D, Arsenault R J, Stone G A. Trans Metall Soc AIME, 1967; 239: 1193
9 Arsenault R J. Mater Sci Eng, 1984; 64: 171
10 Vogelsang M, Arsenault R J, Fisher R M. Metall Trans, 1986; 17A: 379
11 Arsenault R J, Shi N. Mater Sci Eng, 1986; 81: 175
12 Brown N, Lukens K F. Acta Metall, 1961; 9: 106
13 Marchall C V, Maringer R E. Dimensional Instabitity. New York: Pergamon Press, 1977: 139d
[1] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[2] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[3] YANG Lei, ZHAO Fan, JIANG Lei, XIE Jianxin. Development of Composition and Heat Treatment Process of 2000 MPa Grade Spring Steels Assisted by Machine Learning[J]. 金属学报, 2023, 59(11): 1499-1512.
[4] SUN Tengteng, WANG Hongze, WU Yi, WANG Mingliang, WANG Haowei. Effect ofIn Situ 2%TiB2 Particles on Microstructure and Mechanical Properties of 2024Al Additive Manufacturing Alloy[J]. 金属学报, 2023, 59(1): 169-179.
[5] HAN Linzhi, MU Juan, ZHOU Yongkang, ZHU Zhengwang, ZHANG Haifeng. Effect of Heat Treatment Temperature on Microstructure and Mechanical Properties of Ti0.5Zr1.5NbTa0.5Sn0.2 High-Entropy Alloy[J]. 金属学报, 2022, 58(9): 1159-1168.
[6] LI Zhao, JIANG He, WANG Tao, FU Shuhong, ZHANG Yong. Microstructure Evolution of GH2909 Low Expansion Superalloy During Heat Treatment[J]. 金属学报, 2022, 58(9): 1179-1188.
[7] ZHANG Jiarong, LI Yanfen, WANG Guangquan, BAO Feiyang, RUI Xiang, SHI Quanqiang, YAN Wei, SHAN Yiyin, YANG Ke. Effects of Heat Treatment on Microstructure and Mechanical Properties of a Bimodal Grain Ultra-Low Carbon 9Cr-ODS Steel[J]. 金属学报, 2022, 58(5): 623-636.
[8] ZENG Xiaoqin, WANG Jie, YING Tao, DING Wenjiang. Recent Progress on Thermal Conductivity of Magnesium and Its Alloys[J]. 金属学报, 2022, 58(4): 400-411.
[9] YUAN Bo, GUO Mingxing, HAN Shaojie, ZHANG Jishan, ZHUANG Linzhong. Effect of 3%Zn Addition on the Non-Isothermal Precipitation Behaviors of Al-Mg-Si-Cu Alloys[J]. 金属学报, 2022, 58(3): 345-354.
[10] CHEN Run, WANG Shuai, AN Qi, ZHANG Rui, LIU Wenqi, HUANG Lujun, GENG Lin. Effect of Hot Extrusion and Heat Treatment on the Microstructure and Tensile Properties of Network Structured TiBw/TC18 Composites[J]. 金属学报, 2022, 58(11): 1478-1488.
[11] WANG Di, HUANG Jinhui, TAN Chaolin, YANG Yongqiang. Review on Effects of Cyclic Thermal Input on Microstructure and Property of Materials in Laser Additive Manufacturing[J]. 金属学报, 2022, 58(10): 1221-1235.
[12] WANG Wenquan, WANG Suyu, CHEN Fei, ZHANG Xinge, XU Yuxin. Microstructure and Mechanical Properties of TiN/Inconel 718 Composites Fabricated by Selective Laser Melting[J]. 金属学报, 2021, 57(8): 1017-1026.
[13] WANG Yue, WANG Jijie, ZHANG Hao, ZHAO Hongbo, NI Dingrui, XIAO Bolv, MA Zongyi. Effects of Heat Treatments on Microstructure and Mechanical Properties of AlSi10Mg Alloy Produced by Selective Laser Melting[J]. 金属学报, 2021, 57(5): 613-622.
[14] ZHANG Shaohua, XIE Guang, DONG Jiasheng, LOU Langhong. Investigation on Eutectic Dissolution Behavior of Single Crystal Superalloy by Differential Scanning Calorimetry[J]. 金属学报, 2021, 57(12): 1559-1566.
[15] HAO Zhibo, GE Changchun, LI Xinggang, TIAN Tian, JIA Chonglin. Effect of Heat Treatment on Microstructure and Mechanical Properties of Nickel-Based Powder Metallurgy Superalloy Processed by Selective Laser Melting[J]. 金属学报, 2020, 56(8): 1133-1143.
No Suggested Reading articles found!