|
|
FABRICATION OF Cu/Si COMPOSITES ON SOL–GEL PRETREATED Si POWDERS |
CAI Hui 1; WANG Fei 1; WANG Yaping1; SONG Xiaoping1; DING Bingjun1;2 |
1. MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter; School of Science; Xi'an Jiaotong University; Xi'an 710049
2. State Key Laboratory for Mechanical Behavior of Materials; Xi'an Jiaotong University; Xi'an 710049 |
|
Cite this article:
CAI Hui WANG Fei WANG Yaping SONG Xiaoping DING Bingjun. FABRICATION OF Cu/Si COMPOSITES ON SOL–GEL PRETREATED Si POWDERS. Acta Metall Sin, 2009, 45(10): 1261-1266.
|
Abstract Cu/Si composite is an ideal material for electronic packaging owing to its excellent thermophysical and mechanical properties. Especially, its high thermal conductivity can fulfill the requirements of quick elimination of heat of high power devices. However, because of the severe diffusion and reaction between Cu and Si, the Cu–Si compound replaces the Cu and Si phases during the powder metallurgy fabrication at elevated temperature. Therefore, the crucial issue of Cu/Si composite fabrication is to control the Cu–Si diffusion and reaction. In this paper, the Cu/Si composites were fabricated using pretreated films on Si powder formed in Al2O3/TiO2 sol as a diffusion barrier to prevent Cu–Si reaction. The phases, microstructures and properties of Cu/Si composites were investigated. The results indicate that Cu/Si composites on which Si powders are pretreated by sol–gel are primarily composed of Cu, Si, and a few Cu3Si phases. The hardness of the composite is 147HV0.1, and the thermal diffusivity at room temperature is 26.4 mm2/s. Cu and i atoms diffuse via. the defects ifilm and react to form Cu–Si compound in local regions at Cu/Si interface during sintering. However, oly Cu3Si phase is detected in the composite on which the Si powder s not pretreated, and no Cu or Si trace is found. The hardnss is as high as 399HV0.1, but the thermal diffusiviy at room temperature is only 3.0 mm2/s. Thrfore, sol–gel pretreatment on Si powders can effecively reduce the Cu–Si reaction and protect the Cu and Si phases in composites so as to elevate the thermal conductivity.
|
Received: 16 March 2009
|
|
Fund: Supported by National Natural Science Foundation of China (No.50871078) |
[1] Yih P, Chung D D L. J Mater Sci, 1997; 32: 2873
[2] Jha S. In: IEEE ed., Proceedings of the 1995 45th Electronic Components & Technology Conference, Piscataway, NJ: IEEE, 1995: 542
[3] Kim J S, Kum J W, Kang E H, Nguyen D T, Kim J C, Kwon Y S. In: IEEE ed., 1st International Forum on Strategic Technologye–Vehicle Technology, IFOST 2006, Piscataway, NJ: IEEE Computer Society, 2006: 366
[4] Korab J, Korb G, Sebo P. In: IEEE ed., Proceedings of the 1998 22nd IEEE/CPMT International Electronics Manufacturing Technology Symposium, Piscataway, NJ: IEEE, 1998: 104
[5] Liu L, Tang Y P, Zhao H J, Zhu J H, Hu W B. J Mater Sci, 2008; 43: 974
[6] Sundberg G, Paul P, Sung C M, Vasilos T. J Mater Sci, 2006; 41: 485
[7] Schubert T, Brendel A, Schmid K, Koeck T, Ciupi´nski L, Zieli´nski W, Weißg¨arber T, Kieback B. Composites, 2007; 38A: 2398
[8] Xing H W, Cao X M, HuWP, Zhao L Z, Zhang J S. Mater Lett, 2005; 59: 1563
[9] Zhang L, Qu X H, Duan B H, He X B, Ren S B, Qin M L. Compos Sci Technol, 2008; 68: 2731
[10] Lostetter A B, Barlow F, Elshabini A. Microelectron Reliab, 2000; 40: 365
[11] Yang J, Zhang H B, Tao K, Fan Y D. Appl Phys Lett, 1994; 64: 1800
[12] Lee Y F, Lee S L. Scr Mater, 1999; 41: 773
[13] Zacharatos F, Nassiopoulou A G. Phys Stat Sol (a), 2008; 205: 2513
[14] Song D Y, Zong X P, Sun R X, Wang Y Q. Semicond Technol, 2001; 26(2): 29
(宋登元, 宗晓萍, 孙荣霞, 王永青. 半导体技术, 2001; 26(2): 29)
[15] Laurila T, Zeng K J, Kivilahti J K. J Appl Phys, 2000; 88: 3377
[16] Kumar M, Rajkumar, Kumar D, George P J, Paul A K. In: Lopez J F, Montiel–Nelson J A, Pavlidis D eds., Proceedings of SPIE — The International Society for Optical Engineering, VLSI Circuits and Systems, Vol.5117, Maspalomas: SPIE, 2003: 557
[17] Song S X, Liu Y Z, Mao D L, Ling H Q, Li M. Thin Solid Films, 2005; 476: 142
[18] Laurila T, Zeng K J, Kivilahti J K, Molarius J, Suni I. Appl Phys Lett, 2002; 80: 938
[19] Noya A, Takeyama M B, Sase T. J Vac Sci Technol, 2005; 23B: 280
[20] Li C, Hsieh J H, Tang Z Z. J Vac Sci Technol, 2008; 26A: 980
[21] Lin T Y, Cheng H Y, Chin T S, Chiu C F, Fang J S. Appl Phys Lett, 2007; 91: 152908
[22] Chen Y C, Ai X, Huang C Z, Wang B Y. Mater Sci Eng, 2000; A288: 19
[23] Palkar V R, Thapa D, Multani M S, Malghan S G. Mater Lett, 1998; 36: 235
[24] Cros A, Aboelfotoh M O, Tu K N. J Appl Phys, 1990; 67: 3328
[25] Chromik R R, Neils W K, Cotts E J. J Appl Phys, 1999; 86: 4273
[26] Hymes S, Kumar K S, Murarka S P, Ding P J, Wang W, Lanford W A. J Appl Phys, 1998; 83: 4507
[27] Kennedy A R, Wood J D, Weager B M. J Mater Sci, 2000; 35: 2909
[28] Chen G Q, Wu G H, Zhu D Z, Zhang Q. In: IEEE ed., 2005 6th International Conference on Electronics Packaging Technology, Piscataway, NJ: IEEE Computer Society, 2005: 321
[29] Wu Q S, Cai A L, Yang Y Q. Physical Property of Materials. Shanghai: East China University of Science and Technology Press, 2006: 80
(吴其胜, 蔡安兰, 杨亚群. 材料物理性能. 上海: 华东理工大学出版社, 2006: 80) |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|