Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (4): 507-512    DOI: 10.3724/SP.J.1037.2011.00031
论文 Current Issue | Archive | Adv Search |
CONSTITUTIVE RELATIONSHIPS OF Nb MICROALLOYED STEEL DURING HIGH TEMPERATURE DEFORMATION
JIA Bin, PENG Yan
State Key Laboratory of Metastable Materials Science and Technology, Engineering Research Center of Rolling Equipment and Complete Technology of Ministry of Education, Yanshan University, Qinhuangdao 066004
Cite this article: 

JIA Bin PENG Yan. CONSTITUTIVE RELATIONSHIPS OF Nb MICROALLOYED STEEL DURING HIGH TEMPERATURE DEFORMATION. Acta Metall Sin, 2011, 47(4): 507-512.

Download:  PDF(823KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The flow stress curves of Nb microalloyed steel Q345B during hot compression deformation were obtained on Gleeble-3500 thermo-simulation machine. Based on the experimental results, the constitutive model of Nb microalloyed steel during high temperature deformation was established to describe the stress-strain relationship during dynamic softening (dynamic recovery and dynamic recrystallization) and in the steady flow state, in which the influences of the thermal deformation parameters (strain rate and deformation temperature) and dynamic softening mechanism (dynamic recovery and dynamic recrystallization) on the flow stress were considered. A method was provided to solve constitutive equation and establish the mathematic expressions of the correlation coefficients. It is shown that the predicted results by the model are in good agreement with the experimental ones.
Key words:  Nb microalloyed steel      high temperature deformation      dynamic softening mechanism      constitutive model     
Received:  13 January 2011     
Fund: 

Supported by High Technology Research and Development Program of China (No.2009AA04Z143) and Program for New Century Excellent Talents in
University (No.NCET-09-0117)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00031     OR     https://www.ams.org.cn/EN/Y2011/V47/I4/507

[1] Qi J J. Microalloyed Steels. Beijing: Metallurgy Industry Press, 2006: 1

(齐俊杰. 微合金化钢. 北京: 冶金工业出版社, 2006: 1)

[2] Tamura I, translated byWang G D. Controlled Rolling and Controlled Cooling of HSLA Steels. Beijing: Metallurgy Industry Press, 1992: 4

(田村今男, 王国栋译. 高强度低合金钢的控制轧制与控制冷却. 北京: 冶金工业出版社, 1992: 4)

[3] Ebranimi R, Zahiri S H, Najafizadeh A. J Mater Process Technol, 2006; 171: 301

[4] Wang M, Hong H P, Wang X M. J Wuhan Univ Sci Technol, 1999; 33: 134

(王孟, 洪慧平, 王晓明. 武汉科技大学学报, 1999; 33: 134)

[5] Lin Y C, Chen M S, Zhong J. J Cent South Univ (Sci Technol), 2008; 39: 549

(蔺永诚, 陈明松, 钟掘. 中南大学学报(自然科学版), 2008; 39: 549)

[6] Xu G, Xu C S, Zhao J R. ISIJ Int, 2006; 46: 166

[7] Nakata N, Militzer M. ISIJ Int, 2005; 45: 82

[8] Najafizadeh A, Jonas J J. ISIJ Int, 2005; 46: 1679

[9] Lin W, Li H Y, Zeng C T, Bin J, Wei D D. J Cent South Univ (Sci Technol), 2010; 41: 940

(林武, 李红英, 曾翠婷, 宾杰, 魏冬冬. 中南大学学报(自然科学版), 2010; 41: 940)

[10] Zhang H Y, Zhang H B, Chen H S. Mater Mech Eng, 2007; 31: 92

(张红英, 张鸿冰, 陈浩时. 机械工程材料, 2007; 31: 92)

[11] Pu Z J. Mater Sci Eng, 1995; A192: 780

[12] Laasraoui A, Jonas J J. Metall Trans, 1991; 22A: 1545

[13] He Y Z, Chen D H, Lei T Q. Iron Steel, 1999; 34: 29

(何宜柱, 陈大宏, 雷廷权. 钢铁, 1999; 34 : 29)

[14] Suh D W, Cho J Y, Oh K H, Lee H C. ISIJ Int, 2002; 42: 564

[15] Humphreys F J, Hatherly M. Recrystallization and Related Annealing Phenomena. Oxford: Pergamon Press, 1995: 363

[16] Yoshie A, Fujita T, Fujioka M, Okamoto K, Morikawa H. ISIJ Int, 1996; 36: 474

[17] Minami K, Siciliano Jr F, Maccagno, T M, Jonas J J. ISIJ Int, 1996; 36: 1507

[18] Hodgson P D, Gibbs R K. ISIJ Int, 1992; 32: 1329

[19] Manohar P A, Kyuhwan L, Rollett A D, Youngseog L. ISIJ Int, 2003; 43: 1421

[20] Ma B, Peng Y, Liu Y F, Jia B. Trans Mater Heat Treat, 2010; 31: 141

(马博, 彭艳, 刘云飞, 贾斌. 材料热处理学报, 2010; 31: 141)
[1] Zhipeng WAN, Tao WANG, Yu SUN, Lianxi HU, Zhao LI, Peihuan LI, Yong ZHANG. Dynamic Softening Mechanisms of GH4720Li AlloyDuring Hot Deformation[J]. 金属学报, 2019, 55(2): 213-222.
[2] Yanchun ZHAO, Hao SUN, Chunling LI, Jianlong JIANG, Ruipeng MAO, Shengzhong KOU, Chunyan LI. High Temperature Deformation Behavior of High Strength and Toughness Ti-Ni Base Bulk Metallic Glass Composites[J]. 金属学报, 2018, 54(12): 1818-1824.
[3] Binshan YU,Sheliang WANG,Tao YANG,Yujiang FAN. BP Neural Netwok Constitutive Model Based on Optimization with Genetic Algorithm for SMA[J]. 金属学报, 2017, 53(2): 248-256.
[4] SUN Chaoyang, GUO Xiangru, HUANG Jie, GUO Ning, WANG Shanwei, YANG Jing. MODELLING OF PLASTIC DEFORMATION ON COUPLING TWINNING OF SINGLE CRYSTAL TWIP STEEL[J]. 金属学报, 2015, 51(3): 357-363.
[5] SUN Chaoyang, HUANG Jie, GUO Ning, YANG Jing. A PHYSICAL CONSTITUTIVE MODEL FOR Fe-22Mn-0.6C TWIP STEEL BASED ON DISLOCATION DENSITY[J]. 金属学报, 2014, 50(9): 1115-1122.
[6] LIANG Houquan, GUO Hongzhen, NING Yongquan, YAO Zekun, ZHAO Zhanglong. ANALYSIS ON THE CONSTITUTIVE RELATIONSHIP OF TC18 TITANIUM ALLOY BASED ON THE SOFTENING MECHANISM[J]. 金属学报, 2014, 50(7): 871-878.
[7] ZHANG Jin, DENG Yunlai, YANG Jinlong, ZHANG Xinming. EXPERIMENTAL STUDIES AND CONSTITUTIVE MODELING FOR CREEP AGING OF 2124 Al ALLOY[J]. 金属学报, 2013, 49(3): 379-384.
[8] ZHU Yiguo, ZHANG Yang, ZHAO Dan. MICROMECHANICAL CONSTITUTIVE MODEL FOR PHASE TRANSFORMATION OF NiTi POLYCRYSTAL SMA
 
[J]. 金属学报, 2013, 49(1): 123-128.
[9] NIE Wenjin SHANG Chengjia WU Shengjie SHI Peijian CHENG Junjie ZHANG Xiaobing. EFFECTS OF Nb ON RECOVERY OF HOT-DEFORMED AUSTENITE[J]. 金属学报, 2012, 48(7): 775-781.
[10] WU Jinbin LIU Guoquan WANG Hao. EFFECT OF Nb, Ti AND V ON THE HOT DEFORMATION BEHAVIOR OF LOW CARBON Nb MICROALLOYED STEELS[J]. 金属学报, 2010, 46(7): 838-843.
[11] WEI Shitong LU Shanping HE Guangzhong ZHAO Xu LI Dianzhong LI Yiyi . EFFECTS OF HEAT TREATMENT ON THE MICROSTRUCTURE AND MECHANICAL PROPERTY OF WELD METAL WITH Nb ADDITION[J]. 金属学报, 2009, 45(9): 1063-1069.
[12] SHEN Kun WANG Mingpu GUO Mingxing LI Shumei . STUDY ON HIGH TEMPERATURE DEFORMATION CHARACTERISTICS OF Cu–0.23%Al2O3 DISPERSION–STRENGTHENED COPPER ALLOY[J]. 金属学报, 2009, 45(5): 597-604.
[13] WANG Shuhan LIU Zhenyu ZHANG Weina WANG Guodong. INVESTIGATIONS ON TEMPERATURE DEPENDENCE OF MECHANICAL PROPERTIES AND THE DEFORMATION MECHANISM OF A TWIP STEEL[J]. 金属学报, 2009, 45(5): 573-578.
[14] HAN Zhiqiang ZHU Wei LIU Baicheng. THERMOMECHANICAL MODELING OF SOLIDIFICATION PROCESS OF SQUEEZE CASTING I. Mathematic Model and Solution Methodology[J]. 金属学报, 2009, 45(3): 356-362.
[15] WeiGuo Guo. Plastic low stress and physically based constitutive model of four newer naval vessel steels[J]. 金属学报, 2006, 42(5): 463-468 .
No Suggested Reading articles found!