Please wait a minute...
Acta Metall Sin  2008, Vol. 44 Issue (7): 859-862     DOI:
Research Articles Current Issue | Archive | Adv Search |
Investigation on Preparation of Tb2Fe17 by Direct Electrochemical Reduction of Tb4O7-Fe2O3 Pellet in Molten Calcium Chloride
;;;
武汉大学化学分子科学学院
Cite this article: 

;. Investigation on Preparation of Tb2Fe17 by Direct Electrochemical Reduction of Tb4O7-Fe2O3 Pellet in Molten Calcium Chloride. Acta Metall Sin, 2008, 44(7): 859-862 .

Download:  PDF(1092KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  To simplify the preparation process of Tb2Fe17 magnetic intermetallic compound, direct electrochemical reduction of solid pellet of mixture of Tb4O7 and Fe2O3 powder (Tb: Fe = 2: 17) to Tb2Fe17 in molten CaCl2 at 850 oC was investigated. Well stoichiometric Tb2Fe17 powder was obtained through electrolysis at 3.1V for 6h, the oxygen content in the sample was as low as 3900ppm. The reduction process was studied through the composition characterization of the products obtained at different electrolysis times. It was found that Fe2O3 was preferentially deoxidized to metallic Fe within the first hour, and then Tb4O7 was reduced assistantly by forming FeTbx and finally Tb2Fe17 was obtained with the under-potential reduction of Tb4O7 on iron. This was further confirmed by cyclic-voltammetry measurement of a novel Tb4O7 powder filling stainless steel sieve electrode.
Key words:  rare earth magnetic materials      molten salt electrolysis      direct electrochemical reduction      intermetalli     
Received:  10 October 2007     
ZTFLH:  TG146.4  
  TF111.52  
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2008/V44/I7/859

[1]Clark A E,Belson H S.Phys Rev,1972;5B:3642
[2]Dariel M P,Holthuis J P,Pickus M R.J Less-Common Met,1976;45:91
[3]Aston M G,Greenough R D,Jenner A G I,Metheringham W J,Prajapati K.J Alloys Compd,1997;258:97
[4]Chen J L,Meng L Q,Zhao D Q,Gao S X,Du J,Wu G H.J Synth Cryst,2001;30:192 (陈京兰,孟丽琴,赵德乾,高书侠,杜江,吴光恒.人工晶体学报,2001;30:192)
[5]Wu B Q.Metallurgy of Rare Earths.Changsha:Central South of Technology University Press,1997:254 (吴炳乾.稀土冶金学.长沙:中南工业大学出版社,1997:254)
[6]Chen G Z,Fray D J,Farthing T W.Nature,2000;407: 361
[7]Yah X Y,Fray D J.Adv Funct Mater,2005;15:1757
[8]Ma M,Wang D H,Hu X H,Jin X B,Chen G Z.Chem Eur J,2006;12:5075
[9]Zhu Y,Wang D H,Hu X H,Jin X B,Chen G Z.Chem Commun,2007;24:2515
[10]Zhu Y,Ma M,Wang D H,Jiang K,Hu X H,Jin X B, Chen G Z.Chin Sci Bull,2006;51:2535
[11]Wang D H,Qiu G H,Jin X B,Hu X H,Chen G Z.Angew Chem Int Ed,2006;45:2384
[12]Qiu G H,Wang D H,Ma M,Jin X B,Chen G Z.J Elec- troanal Chem,2005;589:321
[13]Qiu G H,Ma M,Wang D H,Jin X B,Hu X H,Chen G Z.J Electrochem Soc,2005;152:E328
[1] DING Zongye, HU Qiaodan, LU Wenquan, LI Jianguo. In Situ Study on the Nucleation, Growth Evolution, and Motion Behavior of Hydrogen Bubbles at the Liquid/ Solid Bimetal Interface by Using Synchrotron Radiation X-Ray Imaging Technology[J]. 金属学报, 2022, 58(4): 567-580.
[2] ZHOU Lijun, WEI Song, GUO Jingdong, SUN Fangyuan, WANG Xinwei, TANG Dawei. Investigations on the Thermal Conductivity of Micro-Scale Cu-Sn Intermetallic Compounds Using Femtosecond Laser Time-Domain Thermoreflectance System[J]. 金属学报, 2022, 58(12): 1645-1654.
[3] GONG Shengkai, SHANG Yong, ZHANG Ji, GUO Xiping, LIN Junpin, ZHAO Xihong. Application and Research of Typical Intermetallics-Based High Temperature Structural Materials in China[J]. 金属学报, 2019, 55(9): 1067-1076.
[4] Hua JI,Yunlai DENG,Hongyong XU,Weiqiang GUO,Jianfeng DENG,Shitong FAN. The Influence of Welding Line Energy on the Microstructure and Property of CMT Overlap Joint of 5182-Oand HC260YD+Z[J]. 金属学报, 2019, 55(3): 376-388.
[5] Liqun CHEN, Zhengchen QIU, Tao YU. Effect of Ru on the Electronic Structure of the [100](010) Edge Dislocation in NiAl[J]. 金属学报, 2019, 55(2): 223-228.
[6] CAO Lihua, CHEN Yinbo, SHI Qiyuan, YUAN Jie, LIU Zhiquan. Effects of Alloy Elements on the Interfacial Microstructure and Shear Strength of Sn-Ag-Cu Solder[J]. 金属学报, 2019, 55(12): 1606-1614.
[7] HE Xianmei, TONG Liuniu, GAO Cheng, WANG Yichao. Effect of Nd Content on the Structure and Magnetic Properties of Si(111)/Cr/Nd-Co/Cr Thin Films Prepared by Magnetron Sputtering[J]. 金属学报, 2019, 55(10): 1349-1358.
[8] Min ZHANG, Erlong MU, Xiaowei WANG, Ting HAN, Hailong LUO. Microstructure and Mechanical Property of the Welding Joint of TA1/Cu/ X65 Trimetallic Sheets[J]. 金属学报, 2018, 54(7): 1068-1076.
[9] Huijun KANG, Jinling LI, Tongmin WANG, Jingjie GUO. Growth Behavior of Primary Intermetallic Phases and Mechanical Properties for Directionally Solidified Al-Mn-Be Alloy[J]. 金属学报, 2018, 54(5): 809-823.
[10] Lin GENG, Hao WU, Xiping CUI, Guohua FAN. Recent Progress on the Fabrication of TiAl-Based Composites Sheet by Reaction Annealingof Elemental Foils[J]. 金属学报, 2018, 54(11): 1625-1636.
[11] Xuan YU, Zhihao ZHANG, Jianxin XIE. Microstructure, Ordered Structure and Warm TensileDuctility of Fe-6.5%Si Alloy with Various Ce Content[J]. 金属学报, 2017, 53(8): 927-936.
[12] Ning ZHAO,Jianfeng DENG,Yi ZHONG,Luqiao YIN. Evolution of Interfacial Intermetallic Compounds in Ni/Sn-xCu/Ni Micro Solder Joints Under Thermomigration During Soldering[J]. 金属学报, 2017, 53(7): 861-868.
[13] Dawei WANG,Shichao XIU. Effect of Bonding Temperature on the Interfacial Micro-structure and Performance of Mild Steel/Austenite Stainless Steel Diffusion-Bonded Joint[J]. 金属学报, 2017, 53(5): 567-574.
[14] Zhijie ZHANG,Mingliang HUANG. Liquid-Solid Electromigration Behavior of Cu/Sn-52In/Cu Micro-Interconnect[J]. 金属学报, 2017, 53(5): 592-600.
[15] Li ZHOU,Chao CUI,Qing JIA,Yingshi MA. Experimental and Finite Element Simulation of Milling Process for γ-TiAl Intermetallics[J]. 金属学报, 2017, 53(4): 505-512.
No Suggested Reading articles found!