Please wait a minute...
Acta Metall Sin  2008, Vol. 44 Issue (4): 478-482     DOI:
Research Articles Current Issue | Archive | Adv Search |
NUMERICAL SIMULATION OF WELD FORMATION IN LASER+GMAW HYBRID WELDING,I. Volumetric Distribution Mode Describing Laser Thermal Action
山东大学南校区材料学院连接技术研究所
Cite this article: 

. NUMERICAL SIMULATION OF WELD FORMATION IN LASER+GMAW HYBRID WELDING,I. Volumetric Distribution Mode Describing Laser Thermal Action. Acta Metall Sin, 2008, 44(4): 478-482 .

Download:  PDF(1000KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  To develop the volumetric heat source mode for laser +GMAW Hybrid welding, four new kinds of distribution functions of volumetric heat sources are proposed after considering the geometry characteristic of laser deep-penetration welds and analyzing the action features of heat source in laser welding. Through numerical analysis of temperature profiles in laser welding, the geometry and dimension of weld cross sections in laser welding are obtained under the conditions corresponding to the four kinds of distribution functions of volumetric heat sources. After comparing the predicted results to the experimental measurements, it is found that the proposed four kinds of volumetric heat source modes are appropriate and adaptive in characterizing the effect of laser thermal action on weld formation, which lay foundation for developing heat source modes in laser +GMAW Hybrid welding.
Key words:  laser welding      heat source mode      weld formation      Hybrid welding      numerical simulation      
Received:  21 September 2007     
ZTFLH:  TG407  
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2008/V44/I4/478

[1]Kinney P,Farson D.In:Laser Institute of Americal,ed., Proc Int Conf on Applications of Lasers & Electro-optics. Orland,FL:Laser Institute of America,2003:21
[2]Petring D,Fuhmann C,Wolf N,Poprawe R.In:Laser Institute of Americal,ed.,Proc Int Conf on Applications of Lasers & Electro-optics,Orland,FL:Laser Institute of America,2003:1
[3]Graf T,Staufer H.Weld J,2003;82:42
[4]Guan Q,Lin S Y.In:China Welding Society,ed.,Proc New Fusion Welding Technology and Applications,Wuxi: China Welding Society,2003:1 (关桥,林尚扬.见:中国焊接学会编,熔焊新技术及应用论文集,无锡:中国焊接学会,2003:1)
[5]Bagger C,Olsen F O.J Laser Appl,2005;17:2
[6]Mahrle A,Beyer E.J Laser Appl,2006;18:169
[7]Qin G L,Lin S Y.Chin J Lasers,2005;32:557 (秦国梁,林尚扬.中国激光,2005;32:557)
[8]Kaplan A.J Phys D:Appl Phys,1994;27:1805
[9]Lampa C,Kaplan A,Powell J,Magnusson C.J Phys D: Appl Phys,1997;30:1293
[10]Sudnik W,Radaj D,Breitschwerdt S,Erofeew W.J Phys D:Appl Phys,2000;33:662
[11]Lee J Y,Ko S H,Farson D F,Yoo C D.J Phys D:Appl Phys,2002;35:1570
[12]Cho J H,Na S J.J Phys D:Appl Phys,2006;39:5372
[13]Xu G X.MJI Research Report of Shandong University, 2007:1 (胥国洋.山东大学材料连接技术研究所研究报告,2007:1)
[1] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
[3] ZHANG Kaiyuan, DONG Wenchao, ZHAO Dong, LI Shijian, LU Shanping. Effect of Solid-State Phase Transformation on Stress and Distortion for Fe-Co-Ni Ultra-High Strength Steel Components During Welding and Vacuum Gas Quenching Processes[J]. 金属学报, 2023, 59(12): 1633-1643.
[4] XIA Dahai, DENG Chengman, CHEN Ziguang, LI Tianshu, HU Wenbin. Modeling Localized Corrosion Propagation of Metallic Materials by Peridynamics: Progresses and Challenges[J]. 金属学报, 2022, 58(9): 1093-1107.
[5] HU Long, WANG Yifeng, LI Suo, ZHANG Chaohua, DENG Dean. Study on Computational Prediction About Microstructure and Hardness of Q345 Steel Welded Joint Based on SH-CCT Diagram[J]. 金属学报, 2021, 57(8): 1073-1086.
[6] LI Zihan, XIN Jianwen, XIAO Xiao, WANG Huan, HUA Xueming, WU Dongsheng. The Arc Physical Characteristics and Molten Pool Dynamic Behaviors in Conduction Plasma Arc Welding[J]. 金属学报, 2021, 57(5): 693-702.
[7] WANG Fuqiang, LIU Wei, WANG Zhaowen. Effect of Local Cathode Current Increasing on Bath-Metal Two-Phase Flow Field in Aluminum Reduction Cells[J]. 金属学报, 2020, 56(7): 1047-1056.
[8] LIU Jizhao, HUANG Hefei, ZHU Zhenbo, LIU Awen, LI Yan. Numerical Simulation of Nanohardness in Hastelloy N Alloy After Xenon Ion Irradiation[J]. 金属学报, 2020, 56(5): 753-759.
[9] WANG Bo,SHEN Shiyi,RUAN Yanwei,CHENG Shuyong,PENG Wangjun,ZHANG Jieyu. Simulation of Gas-Liquid Two-Phase Flow in Metallurgical Process[J]. 金属学报, 2020, 56(4): 619-632.
[10] LIU Yang,WANG Lei,SONG Xiu,LIANG Taosha. Microstructure and High-Temperature Deformation Behavior of Dissimilar Superalloy Welded Joint of DD407/IN718[J]. 金属学报, 2019, 55(9): 1221-1230.
[11] XU Qingyan,YANG Cong,YAN Xuewei,LIU Baicheng. Development of Numerical Simulation in Nickel-Based Superalloy Turbine Blade Directional Solidification[J]. 金属学报, 2019, 55(9): 1175-1184.
[12] Peiyuan DAI,Xing HU,Shijie LU,Yifeng WANG,Dean DENG. Influence of Size Factor on Calculation Accuracy of Welding Residual Stress of Stainless Steel Pipe by 2D Axisymmetric Model[J]. 金属学报, 2019, 55(8): 1058-1066.
[13] LU Shijie, WANG Hu, DAI Peiyuan, DENG Dean. Effect of Creep on Prediction Accuracy and Calculating Efficiency of Residual Stress in Post Weld Heat Treatment[J]. 金属学报, 2019, 55(12): 1581-1592.
[14] ZHANG Qingdong, LIN Xiao, LIU Jiyang, HU Shushan. Modelling of Q&P Steel Heat Treatment Process Based on Finite Element Method[J]. 金属学报, 2019, 55(12): 1569-1580.
[15] Zhe SONG, Shengchuan WU, Yanan HU, Guozheng KANG, Yanan FU, Tiqiao XIAO. The Influence of Metallurgical Pores on Fatigue Behaviors of Fusion Welded AA7020 Joints[J]. 金属学报, 2018, 54(8): 1131-1140.
No Suggested Reading articles found!