Please wait a minute...
Acta Metall Sin  2008, Vol. 44 Issue (1): 85-90     DOI:
Research Articles Current Issue | Archive | Adv Search |
EFFECT OF CONTACT MODEL ON NUMERICAL SIMULATION OF FRICTION STIR WELDING
大连理工大学工程力学系
Cite this article: 

. EFFECT OF CONTACT MODEL ON NUMERICAL SIMULATION OF FRICTION STIR WELDING. Acta Metall Sin, 2008, 44(1): 85-90 .

Download:  PDF(301KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Two contact models, including the classical Coulomb contact model and the modified Coulomb contact model, are used in a fully coupled thermo-mechanical numerical model of friction stir welding to study the effect of the different contact models on the simulation of friction stir welding process. Results indicate that there are little differences between the numerical results of the two contact models for friction stir welding in low rotating speed. But for the friction stir welding in high rotating speed, the classical Coulomb contact model fails to simulate the friction stir welding process due to no limit of shear stress at the interface, which is not considered to be a problem when the modified Coulomb contact model is used. The increase of the rotating speed does not change the nature of solid joining in friction stir welding. When higher rotating speed is adopted, the material deformations on the top and bottom surfaces become more similar, which lead to more uniform microstructures. So, it is recommended to adopt higher rotating speed in a real friction stir welding.
Key words:  synthesizing and processing techniques      friction stir welding      numerical simulation      contact model      
Received:  09 May 2007     
ZTFLH:  TG402  
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2008/V44/I1/85

[1]Mishra R S,Ma Z Y.Mater Sci Eng,2005;R50:1
[2]Ericsson M,Sandstr(?)m R.Int J Fatigue,2003;25:1379
[3]Peel M,Steuwer A,Preuss M,Withers P J.Acta Mater, 2003;51:4791
[4]Gharacheh M A,Kokabi A H,Daneshi G H,Shalchi B, Sarrafi R.Int J Mach Tools Manuf,2006;46:1983
[5]James M N,Hattingh D G,Bradley G R.Int J Fatigue, 2003;25,1389
[6]Kim Y G,Fujii H,Tsumura T,Komazaki T,Nakata K. Mater Lett,2006;60:3830
[7]Hassan Kh A A,Prangness P B,Norman A F,Price D A, Williams S W.Sci Technol Weld Joining,2003;8:257
[8]Attallah M M,Salem H G.Mater Sci Eng,2005;A391: 51
[9]Reynolds A P,Tang W,Khandkar Z,Khan J A,Lindner K.Sci Technol Weld Joining,2005;10:190
[10]Feng J C,Chen Y C,Liu H J.Mater Sci Technol,2006; 22(1):86
[11]Ren S R,Ma Z Y,Chen L Q,Zhang Y Z.Acta Metall Sin, 2007;43:225 (任淑荣,马宗义,陈礼清,张玉政.金属学报,2007;43:225)
[12]Zhang H W,Zhang Z,Chen J T.J Mater Process Technol, 2007;183:62
[13]Zhang Z,Zhang H W.Chin J Mater Res,2006;20:504 (张昭,张洪武.材料研究学报,2006;20:504)
[14]Liu H J,Pan Q,Kong Q W,Tang X D,Su L,Li X J,Sun J B,Yang G F.Weld Joining,2007;(2):7 (刘会杰,潘庆,孔庆伟,唐旭东,苏琳,李学军,孙静波,杨国锋.焊接,2007;(2):17)
[15]Wang J H,Yao S,Wei L W,Qi X H.Trans Chin Weld Inst,2000;21(4):61 (汪建华,姚舜,魏良武,戚新海.焊接学报,2000;21(4):61)
[16]Wang D Y,Feng J C,Wang P F.Trans Chin Weld Inst, 2005;26(3):25 (王大勇,冯吉才,王攀峰.焊接学报,2005;26(3):25)
[17]Han X H,Wang X J.Electron Weld Mach,2006;36(11): 48 (韩晓辉,王希靖.电焊机,2006;36(11):48)
[18]Zhang Z,Zhang H W.Int J Adv Manuf Technol,DOI: 10.100T/s00170-007-0971-6
[19]Zhao Y H,Lin S B,He Z Q,Wu L.Sci Technol Weld Joining,2006;11:178
[20]Schmidt H,Hattel J.Modell Simul Mater Sci Eng,2005; 13:77
[21]Buffa G,Hua J,Shivpuri R,Fratini L.Mater Sci Eng, 2006;A419:389
[22]Dong P,Lu F,Hong J K,Cao Z.Sci Technol Weld Join- ing,2001;6:281
[23]Bastier A,Maitournam M H,Dang Van K,Roger F.Sci Technol Weld Joining,2006;11:278
[24]Zhang H W,Zhang Z.J Mater Sci Technol,2007;23:73
[25]HKS Co.Ltd.ABAQUS User Manual.Version 6.4,2003
[26]Guerra M,Schmidt C,McClure J C,Murr L E,Nunes A C.Mater Charact,2003;49:95
[27]Zhang H W,Zhang Z.In:Hu P,Reddy J N,eds.,Int Conf on Enhancement and Promotion of Computational Meth- ods in Engineering Science and Mechanics,Changchun: Jinlin University press,2006:52
[28]Zhang Z,Zhang H W.Acta Metall Sin,2006;42:998 (张昭,张洪武.金属学报,2006;42:998)
[1] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
[3] ZHANG Kaiyuan, DONG Wenchao, ZHAO Dong, LI Shijian, LU Shanping. Effect of Solid-State Phase Transformation on Stress and Distortion for Fe-Co-Ni Ultra-High Strength Steel Components During Welding and Vacuum Gas Quenching Processes[J]. 金属学报, 2023, 59(12): 1633-1643.
[4] XIA Dahai, DENG Chengman, CHEN Ziguang, LI Tianshu, HU Wenbin. Modeling Localized Corrosion Propagation of Metallic Materials by Peridynamics: Progresses and Challenges[J]. 金属学报, 2022, 58(9): 1093-1107.
[5] HU Long, WANG Yifeng, LI Suo, ZHANG Chaohua, DENG Dean. Study on Computational Prediction About Microstructure and Hardness of Q345 Steel Welded Joint Based on SH-CCT Diagram[J]. 金属学报, 2021, 57(8): 1073-1086.
[6] LI Zihan, XIN Jianwen, XIAO Xiao, WANG Huan, HUA Xueming, WU Dongsheng. The Arc Physical Characteristics and Molten Pool Dynamic Behaviors in Conduction Plasma Arc Welding[J]. 金属学报, 2021, 57(5): 693-702.
[7] HE Changshu, QIE Mofan, ZHANG Zhiqiang, ZHAO Xiang. Effect of Axial Ultrasonic Vibration on Metal Flow Behavior During Friction Stir Welding[J]. 金属学报, 2021, 57(12): 1614-1626.
[8] LIU Chenxi, MAO Chunliang, CUI Lei, ZHOU Xiaosheng, YU Liming, LIU Yongchang. Recent Progress in Microstructural Control and Solid-State Welding of Reduced Activation Ferritic/Martensitic Steels[J]. 金属学报, 2021, 57(11): 1521-1538.
[9] LIU Ming, YAN Fuwen, GAO Chenghui. Effects of Progressive Normal Force on Microscratch Responses of Metallic Materials[J]. 金属学报, 2021, 57(10): 1333-1342.
[10] WANG Fuqiang, LIU Wei, WANG Zhaowen. Effect of Local Cathode Current Increasing on Bath-Metal Two-Phase Flow Field in Aluminum Reduction Cells[J]. 金属学报, 2020, 56(7): 1047-1056.
[11] LIU Jizhao, HUANG Hefei, ZHU Zhenbo, LIU Awen, LI Yan. Numerical Simulation of Nanohardness in Hastelloy N Alloy After Xenon Ion Irradiation[J]. 金属学报, 2020, 56(5): 753-759.
[12] WANG Bo,SHEN Shiyi,RUAN Yanwei,CHENG Shuyong,PENG Wangjun,ZHANG Jieyu. Simulation of Gas-Liquid Two-Phase Flow in Metallurgical Process[J]. 金属学报, 2020, 56(4): 619-632.
[13] XU Qingyan,YANG Cong,YAN Xuewei,LIU Baicheng. Development of Numerical Simulation in Nickel-Based Superalloy Turbine Blade Directional Solidification[J]. 金属学报, 2019, 55(9): 1175-1184.
[14] Peiyuan DAI,Xing HU,Shijie LU,Yifeng WANG,Dean DENG. Influence of Size Factor on Calculation Accuracy of Welding Residual Stress of Stainless Steel Pipe by 2D Axisymmetric Model[J]. 金属学报, 2019, 55(8): 1058-1066.
[15] LU Shijie, WANG Hu, DAI Peiyuan, DENG Dean. Effect of Creep on Prediction Accuracy and Calculating Efficiency of Residual Stress in Post Weld Heat Treatment[J]. 金属学报, 2019, 55(12): 1581-1592.
No Suggested Reading articles found!