Please wait a minute...
Acta Metall Sin  2007, Vol. 43 Issue (10): 1025-1030     DOI:
Research Articles Current Issue | Archive | Adv Search |
Cite this article: 

. . Acta Metall Sin, 2007, 43(10): 1025-1030 .

Download:  PDF(831KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Low cycle fatigue tests of cast nickel base superalloy M38 have been conducted at 900℃ in air under fully reversed total strain control, and the strain rate is 1×10-2s-1. After failure, the fracture surfaces and longitudinal sections of the specimens were examined using a scanning electron microscope. Experimental results revealed that the fatigue property of M38 is similar to that of IN738LC. At high strain amplitudes, crack tends to initiate at stress concentration sites such as surface carbides. While at low strain amplitudes, oxidation takes significant effect on crack initiation. The Cr-rich surface-connected grain boundaries (G.B.) and Ti-rich surface-carbides were observed to be favorable crack initiation sites. Under all strain amplitudes, the crack propagation mode is transgranular.
Key words:  superalloy      high temperature low cycle fatigue      fracture mechanism      crack initiation and propagation      
Received:  12 January 2007     
ZTFLH:  TG146.15  
  V231.95  
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2007/V43/I10/1025

[1]Ott M,Mughrabi H.Mater Sci Eng,1999;A272:24
[2]Bhanu Sankara Rao K,Schiffers H,Schuster H,Nickle H. Metall Trans,1988;19A:359
[3]Fleury E,Remy L.Mater Sci Eng,1993;A167:23
[4]Ostergren W J.J Test Eval,1976;4:327
[5]Chen L J,Wang Z G,Yao G,Tian J F.Acta Metall Sin, 1999;35:1144 (陈立佳,王中光,姚戈,田继丰.金属学报,1999;35:1144)
[6]Gao J T,Ranucci D,Picco E.Mater Sci Eng,1983;58: 127
[7]Manson S S.J Expt Mech,1965;5:193
[8]Editorial Board.Practical Handbook of Engineering Ma- terials,2nd ed,Vol.2,Beijing:Standards Press of China, 2002:652 (工程材料实用手册编辑委员会工程材料实用手册.第2版,第2卷,北京:中国标准出版社,2002:652)
[9]Bettge D,Osterle W,Ziebs J.Z Metallkd,1995;86:3
[10]Laird C,Smith G C.Philos Mag,1962;8:847
[11]Nazmy M Y.Mater Sci Eng,1982;55:231
[12]Reuchet J,Remy L.Mater Sci Eng,1983;58:33
[13]Antolovich S D,Rosa E.Mater Sci Eng,1981;47:47
[14]He L Z,Zheng Q,Sun X F,Hou G C,Guan H R,Hu Z Q.Mater Sci Eng,2004;A380:340
[15]Huang Z W,Wang Z G,Zhu S J,Yuan F H,Wang F G. Mater Sci Eng,2006;A432:308
[16]Reger M,Remy L.Mater Sci Eng,1988;A101:55
[17]Marchionni M,Osinkolu G A,Maldini M.Fatigue Fract Eng Mater Struct,1996;19:955
[1] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[3] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[4] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[5] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[6] CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1209-1220.
[7] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[8] FENG Qiang, LU Song, LI Wendao, ZHANG Xiaorui, LI Longfei, ZOU Min, ZHUANG Xiaoli. Recent Progress in Alloy Design and Creep Mechanism of γ'-Strengthened Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1125-1143.
[9] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[10] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[11] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[12] LI Jiarong, DONG Jianmin, HAN Mei, LIU Shizhong. Effects of Sand Blasting on Surface Integrity and High Cycle Fatigue Properties of DD6 Single Crystal Superalloy[J]. 金属学报, 2023, 59(9): 1201-1208.
[13] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[14] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[15] MU Yahang, ZHANG Xue, CHEN Ziming, SUN Xiaofeng, LIANG Jingjing, LI Jinguo, ZHOU Yizhou. Modeling of Crack Susceptibility of Ni-Based Superalloy for Additive Manufacturing via Thermodynamic Calculation and Machine Learning[J]. 金属学报, 2023, 59(8): 1075-1086.
No Suggested Reading articles found!