Please wait a minute...
Acta Metall Sin  2007, Vol. 43 Issue (9): 999-1003     DOI:
Research Articles Current Issue | Archive | Adv Search |
ELECTROMAGNETIC FIELD DISTRIBUTION IN TWO-STAGE SLITLESS SOFT CONTACT ELECTROMAGNETIC CONTINUOUS CASTING MOLD
Bai-Gang JIN;Qiang WANG
东北大学材料电磁过程研究教育部重点实验室
Cite this article: 

Bai-Gang JIN; Qiang WANG. ELECTROMAGNETIC FIELD DISTRIBUTION IN TWO-STAGE SLITLESS SOFT CONTACT ELECTROMAGNETIC CONTINUOUS CASTING MOLD. Acta Metall Sin, 2007, 43(9): 999-1003 .

Download:  PDF(325KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Some parameters such as length of the top half of mold, coil location and meniscus level in the two-stage slitless soft contact mold were analyzed through the 3-D FEM numerical simulation method. The distribution of electromagnetic field in the whole two-stage slitless mold system was also studied. Magnetic flux density in mold increased with the length of the top half increasing. Coil should be placed near the top of mold to increase the magnetic field. Initial meniscus level should be controlled between the center and the top of coil to obtain the ideal soft contact effect. The alternating magnetic field could penetrate mold wall then impose on metal strand under the given conditions in this research. Magnetic field on vertical direction mainly acted on metal strand meniscus location. The magnetic flux density increased in the top half of mold, but decreased greatly in the down half of mold. The uniformity of magnetic flux density was good in circumferential direction and degenerate to boundary in radical direction. The magnetic field in the two-stage mold was more uniform than that in the slit mold, as was better for industry use.
Key words:  soft contact electromagnetic continuous casting      two-stage slitless mold      electromagnetic field      
Received:  16 January 2007     
ZTFLH:  TF777,TF341.6  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2007/V43/I9/999

[1]Vives C.Metall Trans,1989;20B:623
[2]Toh T,Takeuchi E,Hojo M,Kawai H,Matsumura S.ISIJ Int,1997;37:1112
[3]Tingju L,Kensuke S,Shigeo A.ISIJ Int,1996;36:401
[4]Zou Y M,Sassa K,Asai S.Acta Metall Sin,2001;37:771 (周月明,佐佐健介,浅井滋生.金属学报,2001;37:771)
[5]Yoshida N,Furuhashi S,Tanaka T.In:Iron Steel Inst Japan,ed.,Proc 3rd Int Syrup on Electromagnetic Pro- cessing of Materials,Nagoya,Japan:ISIJ,2000:388
[6]Jin B G,Wang Q,Liu Y,Cui D W,Wu C T,Wang E G, He J C.Chin J Nonferrous Met,2006;16:1931 (金百刚,王强,刘燕,崔大伟,吴成涛,王恩刚,赫冀成.中国有色金属学报,2006;16:1931)
[7]Wang Q,He J C,Wang E G.Chin Pat,02132867.6,2002 (王强,赫冀成,王恩刚.中国专利,02132867.6,2002)
[8]Fuchigami Y,Suenaga R,Takeuchi E.Jpn Pat,JP 3099753,1991
[9]Jin B G,Wang Q,Cui D W,Liu Y,He J C.Acta Metall Sin,2007;34:427 (金百刚,王强,崔大伟,刘燕,赫冀成.金属学报,2007;34:427)
[10]Yu G W,Jia G L,Wang E G,He J C.Acta Metall Sin, 2000;36:1253 (于光伟,贾光霖,王恩刚,李本文,赫冀成.金属学报,2000;36:1253)
[11]Zhang Y J,Chen X Y,Deng A Y,He J C.Heavy Machin- ery,2005;(5):5 (张永杰,陈向勇,邓安元,赫冀成.重型机械,2005;(5):5)
[1] TANG Haiyan, LIU Jinwen, WANG Kaimin, XIAO Hong, LI Aiwu, ZHANG Jiaquan. Progress and Perspective of Functioned Continuous Casting Tundish Through Heating and Temperature Control[J]. 金属学报, 2021, 57(10): 1229-1245.
[2] REN Zhongming,LEI Zuosheng,LI Chuanjun,XUAN Weidong,ZHONG Yunbo,LI Xi. New Study and Development on Electromagnetic Field Technology in Metallurgical Processes[J]. 金属学报, 2020, 56(4): 583-600.
[3] Ran TAO, Yutao ZHAO, Gang CHEN, Xizhou KAI. Microstructure and Properties of In-Situ ZrB2 np/AA6111 Composites Synthesized Under an Electromagnetic Field[J]. 金属学报, 2019, 55(1): 160-170.
[4] Yongyong GONG, Shumin CHENG, Yuyi ZHONG, Yunhu ZHANG, Qijie ZHAI. The Solidification Technology of Pulsed Magneto Oscillation[J]. 金属学报, 2018, 54(5): 757-765.
[5] Qiang WANG, Ming HE, Xiaowei ZHU, Xianliang LI, Chunlei WU, Shulin DONG, Tie LIU. Study and Development on Numerical Simulation for Application of Electromagnetic Field Technologyin Metallurgical Processes[J]. 金属学报, 2018, 54(2): 228-246.
[6] Fei WANG,Engang WANG,Peng JIA,Tao WANG,Anyuan DENG. Effect of Electromagnetic Continuous Casting on TiN Distribution and Internal Crack of Incoloy800H Alloy Billet[J]. 金属学报, 2017, 53(1): 97-106.
[7] Cheng BI, Zhipeng GUO, E LIOTTI, Shoumei XIONG, P S GRANT. QUANTIFICATION STUDY ON DENDRITE FRAGMENTATION IN SOLIDIFICATION PROCESS OF ALLUMINUM ALLOYS[J]. 金属学报, 2015, 51(6): 677-684.
[8] GAO Zhongtang, HU Rui, WANG Jun, YANG Jieren, LI Jinshan. EFFECT OF ELECTROMAGNETIC MELT TREATMENT NEAR LIQUIDUS ON THE FORMATION OF NON-DENDRITE MICROSTRUCTURE OF SUPERALLOY[J]. 金属学报, 2014, 50(12): 1471-1477.
[9] JIA Peng, WANG Engang, LU Hui, HE Jicheng. EFFECT OF ELECTROMAGNETIC FIELD ON MICRO-STRUCTURE AND MECHANICAL PROPERTY FOR INCONEL 625 SUPERALLOY[J]. 金属学报, 2013, 49(12): 1573-1580.
[10] WANG Fang LI Baokuan. ANALYSIS OF ELECTROMAGNETIC FIELD AND JOULE HEATING OF ELECTROSLAG REMELTING PROCESSES[J]. 金属学报, 2010, 46(7): 794-799.
[11] DU Huiling WANG Jianzhong QI Jingang HE Lijia CANG Daqiang . EFFECTS OF PULSED ELECTROMAGNETIC FIELD ON CoC2O4·2H2O POWDER SIZE[J]. 金属学报, 2009, 45(8): 1019-1024.
[12] XU Xiujie DENG Anyuan WANG Engang ZHANG Lintao ZHANG Xingwu ZHANG Yongjie HE Jicheng . EVOLVEMENT MECHANISM OF SURFACE OSCILLA- TION MARKS ON ROUND BILLET DURING SOFT–CONTACT ELECTROMAGNETIC CONTINUOUS CASTING[J]. 金属学报, 2009, 45(4): 464-469.
[13] Bai-Gang JIN. PENETRATION OF MAGNETIC FIELD IN TWO-STAGE SLITLESS MOLD FOR SOFT-CONTACT ELECTROMAGNETIC CONTINUOUS CASTING[J]. 金属学报, 2008, 44(7): 883-886 .
[14] YU Haiqi ZHU Miaoyong. 3-D NUMERICAL SIMULATION OF FLOW FIELD AND TEMPERATURE FIELD IN A ROUND BILLET CONTINUOUS CASTING MOLD WITH ELECTROMAGNETIC STIRRING[J]. 金属学报, 2008, 44(12): 1465-1473.
[15] Bai-Gang JIN. NUMERICAL SIMULATION OF ELECTROMAGNETISM PARAMETERS AND STRUCTURE PARAMETERS IN TWO-STAGE SLIT-LESS MOLD[J]. 金属学报, 2007, 43(4): 427-432 .
No Suggested Reading articles found!