Please wait a minute...
Acta Metall Sin  2010, Vol. 46 Issue (7): 794-799    DOI: 10.3724/SP.J.1037.2010.00080
论文 Current Issue | Archive | Adv Search |
ANALYSIS OF ELECTROMAGNETIC FIELD AND JOULE HEATING OF ELECTROSLAG REMELTING PROCESSES
WANG Fang, LI Baokuan
School of Materials $\&$ Metallurgy, Northeastern University, Shenyang 110819
Cite this article: 

WANG Fang LI Baokuan. ANALYSIS OF ELECTROMAGNETIC FIELD AND JOULE HEATING OF ELECTROSLAG REMELTING PROCESSES. Acta Metall Sin, 2010, 46(7): 794-799.

Download:  PDF(1016KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A 3D finite element model was developed to simulate the magnetic field, electromagnetic force, current density and Joule heating of electroslag remelting< processes (electrode, slag and ingot) by using of Maxwell equation, Lorentz law and Joule law. Especially, the skin effect is shown and discussed based on numerical results. The results show that the current distribute on the external surfaces of slag and ingot. In slag, due to the low electrical conductivity of slag, the current distribution changes, gathering on the end of electrode. The maximum electromagnetic force is at the upper surface nearby the electrode and the maximum joule heating is at the interface of electrode and slag. When current frequency is greater than 35 Hz, the vortex flow  will occur in interior of electrode and ingot. When electrode immersion depth increase and slag cap thickness decrease, the maximum of the joule heat in slag will increase.

Key words:  electroslag remelting processes      electromagnetic field      Joule heating      numerical simulation     
Received:  07 February 2010     
Fund: 

Supported by National Natural Science Foundation of China (No.50934008)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2010.00080     OR     https://www.ams.org.cn/EN/Y2010/V46/I7/794

[1] Dong Y. J Iron Steel Res, 2007; 14(5): 7
[2] Choudhary M, Szekely J. ISS Trans, 1983; 3: 67
[3] Hernandez–Morales B, Mitchell A. Ironmaking Steelmaking, 1999; 26: 423
[4] Auburtin P. Metall Trans, 2000; 31B: 801
[5] Alghisi D, Milano M, Pazienza L. In: Morandi R ed., The 2nd Int Conf on New Developments in Metallurgical ProcessTechnology. Riva Del Garda: Association Italian Metallurgy, 2005: 19
[6] Anon J. Steel Times Int, 1997; 21(7): 20
[7] Weber V. In: Lee P D ed., The 2nd Int Conf on High Order Non–Oscillatory Methods for Wave Propagation, Transport and Flow Problems. Trento: Deutsche Forschungsgemeinschaft, 2007: 83
[8] Wei J H, Ren Y L. Acta Metall Sin, 1994; 30: 481
(魏季和, 任永莉. 金属学报, 1994; 30: 481)
[9] Wei J, Ren Y L. Acta Metall Sin, 1995; 31: 51
(魏季和, 任永莉. 金属学报, 1995; 31: 51)
[10] Geng M P, Sun D X. Process Control and Simulation in Electroslag Casting. Beijing: Metallurgical Industry Press, 2008: 47
(耿茂鹏, 孙达昕. 电渣熔铸过程控制与模拟仿真. 北京: 冶金工业出版社, 2008: 47)
[11] Patel A D. In: Gerbeth G ed., Proc 6th Int Conf on Electromagnetic Processing of Materials. Dresden: Forchungszentrum Dresden-Rossendorf, 2009: 603
[12] Patel A D. In: Peter L ed., Proc 2005 Int Symposium on Liquid Metal Processing and Casting. Ohio: ASM, 2005: 173
[13] Jardy A, Ablitzer D, Wadier J F. Metall Trans, 1991; 22B: 111
[14] Kharicha A, Sch¨utzenh¨ofer W, Ludwig A, Tanzer R, Wu M. Steel Res Int, 2008; 79: 632
[15] Bulic E, Sinigoj A R, Cestnik B. IEEE Trans Electromagnetic Compatibility, 2009; 51: 263
[16] Alghisi D, Milano M, Pazienza L. J Metall Ital, 2005; 1: 21
[17] Kawakami M, Nagata K, Yamamura M. Tetsu Hagane, 1977; 63: 2162
(川上正博, 永田和宏, 山村埝. 铁と钢, 1977; 63: 2162)

[1] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
[3] ZHANG Kaiyuan, DONG Wenchao, ZHAO Dong, LI Shijian, LU Shanping. Effect of Solid-State Phase Transformation on Stress and Distortion for Fe-Co-Ni Ultra-High Strength Steel Components During Welding and Vacuum Gas Quenching Processes[J]. 金属学报, 2023, 59(12): 1633-1643.
[4] XIA Dahai, DENG Chengman, CHEN Ziguang, LI Tianshu, HU Wenbin. Modeling Localized Corrosion Propagation of Metallic Materials by Peridynamics: Progresses and Challenges[J]. 金属学报, 2022, 58(9): 1093-1107.
[5] HU Long, WANG Yifeng, LI Suo, ZHANG Chaohua, DENG Dean. Study on Computational Prediction About Microstructure and Hardness of Q345 Steel Welded Joint Based on SH-CCT Diagram[J]. 金属学报, 2021, 57(8): 1073-1086.
[6] LI Zihan, XIN Jianwen, XIAO Xiao, WANG Huan, HUA Xueming, WU Dongsheng. The Arc Physical Characteristics and Molten Pool Dynamic Behaviors in Conduction Plasma Arc Welding[J]. 金属学报, 2021, 57(5): 693-702.
[7] TANG Haiyan, LIU Jinwen, WANG Kaimin, XIAO Hong, LI Aiwu, ZHANG Jiaquan. Progress and Perspective of Functioned Continuous Casting Tundish Through Heating and Temperature Control[J]. 金属学报, 2021, 57(10): 1229-1245.
[8] WANG Fuqiang, LIU Wei, WANG Zhaowen. Effect of Local Cathode Current Increasing on Bath-Metal Two-Phase Flow Field in Aluminum Reduction Cells[J]. 金属学报, 2020, 56(7): 1047-1056.
[9] LIU Jizhao, HUANG Hefei, ZHU Zhenbo, LIU Awen, LI Yan. Numerical Simulation of Nanohardness in Hastelloy N Alloy After Xenon Ion Irradiation[J]. 金属学报, 2020, 56(5): 753-759.
[10] WANG Bo,SHEN Shiyi,RUAN Yanwei,CHENG Shuyong,PENG Wangjun,ZHANG Jieyu. Simulation of Gas-Liquid Two-Phase Flow in Metallurgical Process[J]. 金属学报, 2020, 56(4): 619-632.
[11] REN Zhongming,LEI Zuosheng,LI Chuanjun,XUAN Weidong,ZHONG Yunbo,LI Xi. New Study and Development on Electromagnetic Field Technology in Metallurgical Processes[J]. 金属学报, 2020, 56(4): 583-600.
[12] XU Qingyan,YANG Cong,YAN Xuewei,LIU Baicheng. Development of Numerical Simulation in Nickel-Based Superalloy Turbine Blade Directional Solidification[J]. 金属学报, 2019, 55(9): 1175-1184.
[13] Peiyuan DAI,Xing HU,Shijie LU,Yifeng WANG,Dean DENG. Influence of Size Factor on Calculation Accuracy of Welding Residual Stress of Stainless Steel Pipe by 2D Axisymmetric Model[J]. 金属学报, 2019, 55(8): 1058-1066.
[14] LU Shijie, WANG Hu, DAI Peiyuan, DENG Dean. Effect of Creep on Prediction Accuracy and Calculating Efficiency of Residual Stress in Post Weld Heat Treatment[J]. 金属学报, 2019, 55(12): 1581-1592.
[15] ZHANG Qingdong, LIN Xiao, LIU Jiyang, HU Shushan. Modelling of Q&P Steel Heat Treatment Process Based on Finite Element Method[J]. 金属学报, 2019, 55(12): 1569-1580.
No Suggested Reading articles found!