Please wait a minute...
Acta Metall Sin  2020, Vol. 56 Issue (4): 523-538    DOI: 10.11900/0412.1961.2019.00370
Current Issue | Archive | Adv Search |
Review on Research Progress of Steel and Iron Wear-Resistant Materials
WEI Shizhong1(),XU Liujie2()
1.National Joint Engineering Research Center for Abrasion Control and Molding of Metal Materials, Henan University of Science and Technology, Luoyang 471003, China
2.Engineering Research Center of Tribology & Materials Protection, Ministry of Education,Henan University of Science and Technology, Luoyang 471003, China
Cite this article: 

WEI Shizhong, XU Liujie. Review on Research Progress of Steel and Iron Wear-Resistant Materials. Acta Metall Sin, 2020, 56(4): 523-538.

Download:  HTML  PDF(16289KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In this paper, the development history of iron and steel wear-resistant materials is introduced, and the composition, microstructure, wear property, antiwear mechanism and modification technology of three typical wear resistant materials, namely high manganese steel, high chromium cast iron and high vanadium high-speed steel, are mainly reviewed. The wear-resistant steel represented by high manganese steel relies on the matrix with high strength and toughness to resist wear, while the wear-resistant alloy represented by high chromium cast iron and high vanadium high-speed steel mainly relies on the wear-resistant phase with high hardness to resist wear. High vanadium high speed steel has better wear resistance than high chromium cast iron, which is related to VC characteristics with high hardness and good shape. It is proposed that high performance wear-resistant materials should have three elements: high strength and toughness matrix, multi-scale synergistic action of high quality wear-resistant phase with high hardness and good morphology, as well as good bonding interface between wear-resistant phase and matrix.

Key words:  steel and iron wear-resistant material      research progress      prospect     
Received:  04 November 2019     
ZTFLH:  TG141  
Fund: National Natural Science Foundation of China(51171060);Program for Changjiang Scholars and Innovative Research Team in University(IRT1234)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2019.00370     OR     https://www.ams.org.cn/EN/Y2020/V56/I4/523

Fig.1  Typical microstructures of high manganese steel of as-cast (a) and after solid solution treatment (b)[11]
Fig.2  The orientation image map of 18Mn steel after compressed 70% at 900 ℃, holding time for 3 min and forced-air hardening (ND—normal direction)[12]Color online(a) orientation image map of Kikuchi lines contrast(b) orientation image map of phase distribution (grey: austanite, red: ε-M; blue: α'-M)(c) orientation of austenite
Fig.3  Bright (a, d) and dark (b, e) field TEM images and electron diffraction patterns (c, f) of high manganese steel under the compression deformations of 30% (a~c) and 50% (d~f)[19]
Fig.4  Typical microstructure of high chromium cast iron[51](a) OM image of the microstructure (b) the morphology of the extractive primary carbides
Type ofTwo-body wear propertyThree-body wear property
abrasive
SiC (2600 HV)Austenite is beneficial to improve wear resistanceAustenite is beneficial to improve wear resistance
Martensite is not conducive to improving wear resistanceMartensite is not conducive to improving wear resistance
The increase of carbide can increase the wear resistance slightly

The increase of carbide decreases the wear resistance

Garnet (1360 HV)

Austenite is not conducive to improving wear resistanceAustenite is not conducive to improving wear resistance
Martensite is beneficial to improve wear resistanceMartensite is beneficial to improve wear resistance
The increase of carbide can increase the wear resistance significantlyThe increase of carbide can increase the wear resistance significantly
Table 1  Test result under different abrasive wear conditions[52]
Type of abrasive

Size of carbide<abrasive size

Size of carbide>abrasive size

Hard abrasive

Significant decrease in wear resistance, increasing carbide size can improve wear resistanceWear resistance decreases greatly under higher stress conditions, proper control of carbide size can improve wear resistance

Soft abrasive

Wear resistance decreases under high stress, increasing carbide size can improve wear resistance

Increasing the amount of carbide can improve the wear resistance

Table 2  Effect of size effect of carbide on wear resistance of high Cr cast iron[61]
CSiCrMoWVNbFeRef.
1.2~2.6<1.04.0~12.03.6~6.53.5~6.53.5~6.5-Bal.[103]
2.0-5~73~43~45~6-Bal.[104]
1.6~2.00.3~1.04~84~61.5~2.53~50.5~1.5Bal.[105]
2-5258-Bal.[106]
1.40.263.922.830.753.34Bal.[107]
2.980.654.252.959.80Bal.[108]
Table 3  chemical compositions of high vanadium high speed steel[103,104,105,106,107,108]
Fig.5  Liquids surface diagram of Fe-5Cr-V-C, Fe-15Cr-V-C and Fe-5Cr-5W-5Mo-V-C systems[109]
Fig.6  A pseudo-binary phase diagram of (Fe-5Cr-5Mo-5W-2C)-V alloy system (T—temperature)[111]
Fig.7  Pseudo-binary phase diagram of (Fe-5Cr-2Mo-9V)-C alloy system[112]
Fig.8  The curves of iso-austenite (Ar—volume fraction of retained austenite, %)[108]
Fig.9  Relationship of retained austenite content (a) and hardness(b) vs quenching and tempering temperatures using back-propagation (BP) neural network[117]
Fig.10  SEM images of the worn cross-section under rolling sliding wear condition[113](a) high chromium cast iron (Cr20) (b) high-vanadium high-speed steel (V10)
Fig.11  Microstructures of V10[113](a) TEM image of VC (b) HRTEM of coherent interface of the VC/austenite matrix (d—interplanar spacing)
[1] Chen H H. Application Manual of Wear-Resistant Materials [M]. 2nd Ed., Beijing: China Machine Press, 2012: 10
[1] 陈华辉. 耐磨材料应用手册 [M]. 第2版. 北京: 机械工业出版社, 2012: 10
[2] Li W. Technology Roadmap of China Foundry Wear-Resistant Materials Industry [M]. Beijing: China Machinery Industry Press, 2013: 1
[2] 李 卫. 中国铸造耐磨材料产业技术路线图 [M]. 北京: 机械工业出版社, 2013: 1
[3] Li W. Development of casting wear resistant materials in China [J]. China Found., 2012, 61: 967
[3] 李 卫. 中国铸造耐磨材料的发展——兼介中国铸造耐磨材料产业技术路线图 [J]. 铸造, 2012, 61: 967
[4] Wei S Z. Study on microstructure and wear properties of high vanadium high speed steel [D]. Xi'an: Xi'an Jiaotong University, 2005
[4] 魏世忠. 高钒高速钢组织与磨损性能的研究 [D]. 西安: 西安交通大学, 2005
[5] Clagerski, translated by Yu M S, Wu Y W. Handbook of Friction, Wear and Lubrication (Book 1) [M]. Beijing: China Machine Press, 1986: 9
[5] 克拉盖尔斯基著, 余梦生, 吴永伟译. 摩擦、磨损与润滑手册-第一册 [M]. 北京: 机械工业出版社, 1986: 9
[6] Shao H S. Friction and Wear [M]. Beijing: Coal Industry Press, 1992: 1
[6] 邵荷生. 摩擦与磨损 [M]. 北京: 煤炭工业出版社, 1992: 1
[7] Chen H H. Study on the wear mechanism of middle slot of scraper conveyor [D]. Beijing: China University of Mining and Technology, 1983
[7] 陈华辉. 刮板运输机中部槽磨损机理研究 [D]. 北京: 中国矿业大学, 1983
[8] Wei S Z, Long R. Development and application of high vanadium high wear resistant alloy hammer head [J]. Cement, 2001, (8): 31
[8] 魏世忠, 龙 锐. 高钒高耐磨合金锤头的研制及使用 [J]. 水泥, 2001, (8): 31
[9] Frommeyer G, Brüx U, Neumarm P. Supra-ductile and high-strength manganese-TRIP/TWIP steels for high energy absorption purposes [J]. ISIJ Int., 2003, 43: 438
[10] Xie J P, Wang W Y, Li J W, et al. Wear-Resistant Austenitic Manganese Steel [M]. Beijing: Science and Technology Press, 2008: 81
[10] 谢敬佩, 王文焱, 李继文等. 耐磨奥氏体锰钢 [M]. 北京: 科学技术出版社, 2008: 81
[11] Guo Q Y. Effects of aging treatment and plastic deformation on microstructure and properties of alloying high manganese steel [D]. Tianjin: Tianjin University, 2013
[11] 郭倩颖. 时效与塑性变形对合金化高锰钢组织及性能的影响 [D]. 天津: 天津大学, 2013
[12] Wang Z Q, Sun P, Liu W Q, et al. Influence of austenite states on martensitic transformation in a high manganese steel [J]. J. Chin. Electron. Microsc. Soc., 2011, 30: 334
[12] 王璋琦, 孙 鹏, 刘文琦等. 高锰钢中奥氏体状态对马氏体相变的影响 [J]. 电子显微学报, 2011, 30: 334
[13] Krivobok V N. Investigation on the microstructure of Hadfield manganese steel [J]. Trans. Amer. Soc. Steel Treat., 1929, 15: 893
[14] Li Z C, Yuan X G. Summaey of steengthened high manganese steel mechanism [J]. J. Liaoning Tech. Univ., 1993, 12(1): 43
[14] 李智超, 袁晓光. 高锰钢强化机理综述 [J]. 辽宁工程技术大学学报, 1993, 12(1): 43
[15] Olson G B, Cohen M. A general mechanism of martensitic nucleation: Part I. General concepts and the FCC→HCP transformation [J]. Metall. Trans., 1976, 7A: 1897
[16] Choi H C, Ha T K, Shin H C, et al. Formation kinetics of deformation twin and deformation induced ε-martensite in an austenitic Fe-C-Mn steel [J]. Scr. Mater., 1999, 40: 1171
[17] HadfieldsLtd. Manganese Steel [M]. Edinburgh: Oliver and Boyd, 1956: 2
[18] Raghavan K S, Sastri A S, Marcinkowski M J. Nature of the work-hardening behavior in Hadfield's manganese steel [J]. Trans. Met. Soc. AIME, 1969, 245: 1569
[19] Zhang F Q, He C, Zhou D W. Study on work hardening mechanism of Hadfield steel during deformation process [J]. J. Hunan Univ. (Nat. Sci. Ed.), 2016, 43(12): 11
[19] 张福全, 何 翠, 周惦武. 高锰钢形变过程中加工硬化机理的研究 [J]. 湖南大学学报(自然科学版), 2016, 43(12): 11
[20] Efstathiou C, Sehitoglu H. Strain hardening and heterogeneous deformation during twinning in Hadfield steel [J]. Acta Mater., 2010, 58: 1479
[21] Wang T S, Hou R J, Lv B, et al. Microstructure evolution and deformation mechanism change in 0.98C-8.3Mn-0.04N steel during compressive deformation [J]. Mater. Sci. Eng., 2007, A465: 68
[22] Idrissi H, Renard K, Ryelandt L, et al. On the mechanism of twin formation in Fe-Mn-C TWIP steels [J]. Acta Mater., 2010, 58: 2464
[23] Hutchinson B, Ridley N. On dislocation accumulation and work hardening in Hadfield steel [J]. Scr. Mater., 2006, 55: 299
[24] Li S T, Lv Y P, Zhu R F, et al. Work hardening nechanism aspects of high manganese steel [J]. Ordn. Mater. Sci. Eng., 1999, 22(5): 61
[24] 李士同, 吕宇鹏, 朱瑞富等. 浅论高锰钢的加工硬化机制 [J]. 兵器材料科学与工程, 1999, 22(5): 61
[25] Dai T C, Han X L, Jiang W H, et al. The double n behaviour in high Mn steel [J]. J Shenyang Polytech. Univ., 1994, 16(4): 68
[25] 戴天成, 韩行霖, 姜文挥等. 高锰钢的双n行为 [J]. 沈阳工业大学学报, 1994, 16(4): 68
[26] Zhu R F. Study on wear resistance mechanism of metamorphic manganese steel [D]. Harbin: Harbin Institute of Technology, 1994
[26] 朱瑞富. 变质系列锰钢耐磨机理的研究 [D]. 哈尔滨: 哈尔滨工业大学, 1994
[27] Dastur Y N, Leslie W C. Mechanism of work hardening in Hadfield manganese steel [J]. Metall. Trans., 1981, 12A: 749
[28] Iglesias C, Solórzano G, Schulz B. Effect of low nitrogen content on work hardening and microstructural evolution in Hadfield steel [J]. Mater. Charact., 2009, 60: 971
[29] Karaman I, Sehitoglu H, Gall K, et al. Deformation of single crystal Hadfield steel by twinning and slip [J]. Acta Mater., 2000, 48: 1345
[30] Zhang Z Z. Austenitic Manganese Steel [M]. Beijing: Metallurgical Industry Press, 2002: 111
[30] 张增志. 耐磨高锰钢 [M]. 北京: 冶金工业出版社, 2002: 111
[31] Korshunov L G, Chernenko N L. Effect of aluminum on the structural transitions and the wear resistance of Hadfield steel under friction [J]. Phys. Met. Metallogr., 2018, 119: 700
[32] Najafabadi V N, Amini K, Alamdarlo M B. Investigating the effect of titanium addition on the wear resistance of Hadfield steel [J]. Metall. Res. Technol., 2014, 111: 375
[33] Huo W X, Ren H P, Jin Z L, et al. Effects of microstructure and mechanical properties of high manganese steel containing different content of rare earth [J]. Hot. Work. Technol., 2012, 41(7): 15
[33] 霍文霞, 任慧平, 金自力等. 不同稀土加入量对高锰钢组织及力学性能的影响 [J]. 热加工工艺, 2012, 41(7): 15
[34] Chen C, Zhang F C, Wang F, et al. Effect of N+Cr alloying on the microstructures and tensile properties of Hadfield steel [J]. Mater. Sci. Eng., 2017, A679: 95
[35] Chen C, Lv B, Ma H, et al. Wear behavior and the corresponding work hardening characteristics of Hadfield steel [J]. Tribol. Int., 2018, 121: 389
[36] Chen C, Zhang F C, Lv B, et al. Asynchronous effect of N+Cr alloying on the monotonic and cyclic deformation behaviors of Hadfield steel [J]. Mater. Sci. Eng., 2019, A761: 138015
[37] Lu Y P, Li S T, Chen F S, et al. On the impact abrasive wear of super-high manganese steel [J]. Acta Metall. Sin., 1999, 35: 581
[37] 吕宇鹏, 李士同, 陈方生等. 变质超高锰钢的冲击磨料磨损行为研究 [J]. 金属学报, 1999, 35: 581
[38] Yan H, Xie J P, Wang W Y, et al. Optimization of heat treatment process and mechanical properties enhancement of super-high manganese steel [J]. Foundry, 2006, 55: 1067
[38] 闫 华, 谢敬佩, 王文焱等. 超高锰钢热处理工艺优化及力学性能的提高 [J]. 铸造, 2006, 55: 1067
[39] Li S S, Chen X J. Work hardening and wearability of superhigh manganese steel [J]. J. Iron Steel Res., 1997, 9(4): 38
[39] 李树索, 陈希杰. 超高锰钢加工硬化及耐磨性的研究 [J]. 钢铁研究学报, 1997, 9(4): 38
[40] Zhang L F, Xiong Y, Zhang Y, et al. Microstructure of high manganese steel by laser shock processing [J]. Chin. J. Lasers, 2011, 38(6): 226
[40] 张凌峰, 熊 毅, 张 毅等. 高锰钢在激光冲击作用下的微观特征 [J]. 中国激光, 2011, 38(6): 226
[41] Yan W L, Fang L, Sun K, et al. Effect of surface nanocrystallization on abrasive wear properties in Hadfield steel [J]. J. Xi'an Jiaotong Univ., 2007, 41: 611
[41] 严伟林, 方 亮, 孙 琨等. 表面纳米化对高锰钢磨料磨损性能的影响 [J]. 西安交通大学学报, 2007, 41: 611
[42] Zu F D, Li X Y, Liu L J, et al. Research on microstructure and work hardening mechanism of high manganese steel by simulating actual working condition [J]. Trans. Mater. Heat Treat., 2006, 27(2): 71
[42] 祖方道, 李小蕴, 刘兰俊等. 不同相对冲击功下高锰钢组织与加工硬化机制的研究 [J]. 材料热处理学报, 2006, 27(2): 71
[43] Hu X Y. Explosive and mechanism of explosion hardening of high manganese steel [D]. Hefei: University of Science and Technology of China, 2014
[43] 胡晓艳. 高锰钢爆炸硬化专用炸药与硬化机理的研究 [D]. 合肥: 中国科学技术大学, 2014
[44] Chen C, Lv B, Feng X Y, et al. Strain hardening and nanocrystallization behaviors in Hadfield steel subjected to surface severe plastic deformation [J]. Mater. Sci. Eng., 2018, A729: 178
[45] Feng X Y, Zhang F C, Yang Z N, et al. Wear behaviour of nanocrystallised Hadfield steel [J]. Wear, 2013, 305: 299
[46] Lan P, Du C W, Ji Y, et al. Research status of high manganese TWIP steel for automotive industry [J]. China Metall., 2014, 24(7): 6
[46] 兰 鹏, 杜辰伟, 纪 元等. 汽车用高锰TWIP钢的研究现状 [J]. 中国冶金, 2014, 24(7): 6
[47] Gr?ssel O, Frommeyer G. Effect of martensitic phase transformation and deformation twinning on mechanical properties of Fe-Mn-Si-Al steels [J]. Mater. Sci. Technol., 1998, 14: 1213
[48] Yuan X Y. Mechanical properties and corrosion resistance of Fe-Mn-Al-C-Cr-N system high manganese steels [D]. Shenyang: Northeastern University, 2017
[48] 袁晓云. Fe-Mn-Al-C-Cr-N系高锰钢力学性能及耐蚀性研究 [D]. 沈阳: 东北大学, 2017
[49] Park I J, Jeong K H, Jung J G, et al. The Mechanism of enhanced resistance to the hydrogen delayed fracture in Al-added Fe-18Mn-0.6C twinning-induced plasticity steels [J]. Int. J. Hydrogen Energy, 2012, 37: 9925
[50] Rivlin V G. Critical review of constitution of carbon-chromium-iron and carbon-iron-manganese systems [J]. Int. Met. Rev., 1984, 29: 299
[51] Zhi X H. Study on the morphology control of primary carbides in hypereutectic high chromium cast irons [D]. Xi'an: Xi'an Jiaotong University, 2008
[51] 智小慧. 过共晶高铬铸铁初生碳化物形态控制的研究 [D]. 西安: 西安交通大学, 2008
[52] Xing J D, Lu W H, Wang X T. The investigation on the abrasive wear resistance of high-Cr cast irons [A]. Chromium Wear Resistant Cast Iron [C]. Xi'an: Xi'an Jiaotong University Press, 1986: 15
[52] 邢建东, 陆文华, 王小同. 在不同磨料磨损条件下高铬铸铁磨损过程的研究 [A]. 铬系抗磨铸铁论文集 [C]. 西安: 西安交通大学出版社, 1986: 15
[53] Maratray F. Choice of appropriate compositions for chromium-molybdenum white iron [J]. AFS Trans., 1971, 79: 121
[54] Shimizu K, Purba R H, Kusumoto K, et al. Microstructural evaluation and high-temperature erosion characteristics of high chromium cast irons [J]. Wear, 2019, 426-427: 420
[55] Zhang A F, Xing J D. A quantitative investigation on the dynamic inter-phase corrosion of chromium white cast irons [J]. Acta Metall. Sin., 2001, 37: 77
[55] 张安峰, 邢建东. Cr系白口铸铁动态相间腐蚀的定量研究 [J]. 金属学报, 2001, 37: 77
[56] Shao H S, Qu J X. Friction and Wear [M]. Beijing: China Coal Industry Publishing House, 1992: 380
[56] 邵荷生, 曲敬信. 摩擦与磨损 [M]. 北京: 煤炭工业出版社, 1992: 380
[57] Westgren A. De Trigonala krom-och mangankarbidernas kristalbyggnad och sammansattning [J]. Jernkont. Ann., 1935, 119: 231
[58] Rouault M A, Herpin P, Fruchart M R. Etude cristallographique des carbures Cr7C3 et Mn7C3 [J]. Ann. Chim., 1970, 5: 461
[59] Dudzinski W, Morniroll J P, Gantois M. Stacking faults in chromium, iron and vanadium mixed carbides of the type M7C3 [J]. J. Mater. Sci., 1980, 15: 1387
[60] Larsen-Badse J. Influence of grit size on the groove formation during sliding abrasion [J]. Wear, 1968, 11: 213
[61] He L, Zhang C J, Zhou W X. The "size effect" of carbide phase in high chromium white cast iron during two-body abrasion wear [J]. Hot Work. Technol., 1998, (4): 15
[61] 贺 林, 张长军, 周卫星. 高铬铸铁中碳化物相抗磨作用的“尺寸效应” [J]. 热加工工艺, 1998, (4): 15
[62] Jia Y D, Su J Y. The effect of carbide orientation and thickness on the abrasive wear resistance of high Cr cast iron [A]. Chromium Wear Resistant Cast Iron [C]. Xi'an: Special Steel Society of China Metal Society, 1986: 87
[62] 贾玉丁, 苏俊义. 碳化物的位向及尺寸对高铬铸铁耐磨性的影响 [A]. 全国金属耐磨材料和磨损学术会议 [C]. 西安: 中国金属学会特殊钢学会, 1986: 87
[63] Do?an ? N, Laird II G, Hawk J A. Abrasion resistance of the columnar zone in high Cr white cast irons [J]. Wear, 1995, 181-183: 342
[64] Zhi X H, Liu J Z, Xing J D, et al. Effect of cerium modification on microstructure and properties of hypereutectic high chromium cast iron [J]. Mater. Sci. Eng., 2014, A603: 98
[65] Tian H H, Addie G R, Visintainer R J. Erosion-corrosion performance of high-Cr cast iron alloys in flowing liquid-solid slurries [J]. Wear, 2009, 267: 2039
[66] Adler T A, Do?an O N. Erosive wear and impact damage of high-chromium white cast irons [J]. Wear, 1999, 225-229: 174
[67] Li Z X, Yu Z Z, Wang X T. The investigation on the erosion wear characteristics of high chromium cast iron [A]. Chromium Wear Resistant Cast Iron [C]. Xi'an: Special Steel Society of China Metal Society, 1986: 40
[67] 黎志欣, 余滋璋, 王小同. 高铬铸铁冲蚀磨损特性研究 [A]. 全国金属耐磨材料和磨损学术会议 [C]. 西安: 中国金属学会特殊钢学会,1986: 40
[68] Hou J L, Xie J P, Wang W Y. Effects of impact angle and acidity on erosion wear of low chromium cast iron containing nickel [J]. Found. Technol., 2008, 29: 376
[68] 侯锦岭, 谢敬佩, 王文焱等. 冲蚀角和酸性对含镍低铬铸铁腐蚀磨损的影响 [J]. 铸造技术, 2008, 29: 376
[69] Chung R J, Tang X, Li D Y, et al. Abnormal erosion-slurry velocity relationship of high chromium cast iron with high carbon concentrations [J]. Wear, 2011, 271: 1454
[70] Lu F G, Wei S Z, Xu L J, et al. Investigation on erosion-wear behaviors of high-chromium cast iron with high nitrogen content in salt-sand slurry [J]. Mater. Res. Express, 2019, 6: 106558
[71] Lu F G. Structure and Properties of High Nitrogen Wear Resistant and Corrosion Resistant Cast Iron [M]. Luoyang: Henan University of Science and Technology, 2019: 1
[71] 路富刚. 高氮耐磨耐蚀铸铁的组织与性能 [M]. 洛阳: 河南科技大学, 2019: 1
[72] Llewellyn R J, Yick S K, Dolman K F. Scouring erosion resistance of metallic materials used in slurry pump service [J]. Wear, 2004, 256: 592
[73] Wu N F, Pan G Q, Yu M P. Development of high chromium wear-resistant alloy and its application in phosphoric acid slurry pump [J]. Foundry, 1998, (3): 26
[73] 吴南锋, 潘国强, 余曼萍. 高铬耐磨蚀合金研制及其在磷酸料浆泵上的应用 [J]. 铸造, 1998, (3): 26
[74] Zhao Y Z. Development & application on abrasion resistance and stain resistance super-high-chromiun Cast Iron [J]. China Found. Mach. Technol., 2003, (5): 24
[74] 赵亚忠. 超高铬抗磨损耐腐蚀铸铁的研制及应用 [J]. 中国铸造设备与技术, 2003, (5): 24
[75] Zhang S G, Huang W, Zhao Z J, et al. Technology to overcome the brittleness of super high chromium white cast iron [J]. Found. Technol., 2004, 25: 408
[75] 张山纲, 黄 伟, 赵占军等. 超高铬白口铸铁脆性韧化技术 [J]. 铸造技术, 2004, 25: 408
[76] Yang W. Research of the super high Carbon and Chromium microstructures of hardfacing alloys [D]. Zhengzhou: China Academy of Machinery Science and Technology, 2007: 51
[76] 杨 威. 超高碳高铬耐磨堆焊合金微观组织研究 [D]. 郑州: 机械科学研究院, 2007: 51
[77] Hanlon D N, Rainforth W M, Sellars C M. The rolling/sliding wear response of conventionally processed and spray formed high chromium content cast iron at ambient and elevated temperature [J]. Wear, 1999, 225-229: 587
[78] Huang Z F, Xing J D, Zhang A F, et al. Solidification microstructure of hypereutectic high chromium cast iron semi-solid slurry in centrifugal casting [J]. Spec. Cast. Nonferrous Alloys, 2006, 26: 489
[78] 皇志富, 邢建东, 张安峰等. 半固态过共晶高铬铸铁浆料在离心力作用下的凝固组织 [J]. 特种铸造及有色合金, 2006, 26: 489
[79] Li H. Study on the morphology of the carbides in high chromium cast iron [D]. Xi'an: Northwestern Polytechnical University, 2007
[79] 李 浩. 高铬铸铁中碳化物生长形态的研究 [D]. 西安: 西北工业大学, 2007
[80] Su J Y, Zhou Q D, Jia Y D, et al. An exploration on abrasive wear resistance of the unidirectionally solidified high Cr cast iron [J]. J. Xi'an Jiaotong Univ., 1983, 17(4): 62
[80] 苏俊义, 周庆德, 贾育丁等. 定向凝固高铬铸铁耐磨性的初探 [J]. 西安交通大学学报, 1983, 17(4): 62
[81] Zhang C F, Gong J S, Huang X R, et al. Purification and Modification of Liquid Metal [M]. Shanghai: Shanghai Scientific & Technical Publishers, 1989: 86
[81] 张承甫, 龚建森, 黄杏蓉等. 液态金属的净化与变质 [M]. 上海: 上海科学技术出版社, 1989: 86
[82] Zhang J H, Li D J, Pan J H, et al. Selecting the modificators by the function of bond parameters and its application in the study of high Cr cast iron [J]. Foundry, 1989, (11): 7
[82] 张景辉, 李大军, 潘金虎等. 应用键参数函数选择变质剂及其在高铬铸铁上应用的试验研究 [J]. 铸造, 1989, (11): 7
[83] Jiang Z S, Jia W L, Zhang X G. Effects of RE on mechanical properties of CuZnAl shape memory alloys [J]. Chin. Rare Earths, 1997, 18(1): 33
[83] 姜镇崧, 贾文亮, 张学光. 稀土硅铁孕育对高铬合金白口铸铁性能的影响 [J]. 稀土, 1997, 18(1): 33
[84] Yu Z S. Research on the application of rare earths in iron and steel in recent years [J]. J. Chin. Rare Earth Soc. (Engl. Ed., 1990, 8: 139
[85] Zhang J H, Li D J, Jia J, et al. Study on the structure and properties of a modifiedhigh-chromium cast iron [J]. Foundry, 1993, (8): 7
[85] 张景辉, 李大军, 贾 均等. 变质高铬铸铁组织与性能的研究 [J]. 铸造, 1993, (8): 7
[86] Yang X S. Progress in application of K, Na in iron and steel [J]. J. Shandong Univ. (Eng. Sci.), 2002, 32: 166
[86] 杨相寿. K, Na在钢铁中应用的进展 [J]. 山东大学学报(工学版), 2002, 32: 166
[87] Fu H G, Wen M X, Yang Z J. Application of composite modified high chromium cast iron to cold ore sieve plate [J]. Iron Steel Vanad. Titan., 1997, 18: 22
[87] 符寒光, 文梦新, 杨志军. 复合变质处理高铬铸铁在冷矿筛板上的应用 [J]. 钢铁钒钛, 1997, 18: 22
[88] Ma G R, Guo E J, Wang L P. Study on the effect of RE-Mg modification treatment on the high chromium cast iron [J]. J. Harbin Univ. Sci. Technol., 2005, 10(4): 33
[88] 马国睿, 郭二军, 王丽萍. 稀土镁对高铬铸铁变质效果的研究 [J]. 哈尔滨理工大学学报, 2005, 10(4): 33
[89] Shkolyarenko G D, Khudik Y T, Sheenko I N. High-chromium pig iron for making blast-furnace charging apparatus [J]. Metallurgist, 1983, 27: 161
[90] Zhang Y W, Zhao X L. The influence of trace Zn on structure and properties of high chromium casting iron [J]. Hot Work. Technol., 1990, (3): 20
[90] 张永维, 赵学礼. 微量锌对高铬铸铁组织和性能的影响 [J]. 热加工工艺, 1990, (3): 20
[91] Xu H J, Wang Z C. Mechanism of spheroidization of carbide in RE-complex modified vanadium white iron [J]. J. Beijing Univ. Iron Steel Technol., 1987, (1): 35
[91] 徐恒钧, 王兆昌. 稀土变质钒白口铸铁中碳化物球化机理 [J]. 北京钢铁学院学报, 1987, (1): 35
[92] Bedolla-Jacuinde A, Correa R, Quezada J G, et al. Effect of titanium on the as-cast microstructure of a 16% chromium white iron [J]. Mater. Sci. Eng., 2005, A398: 297
[93] Liu S P, Su D, Sun K, et al. Effects of vanadium and titanium on carbide appearance and wear resistance of high chromium cast iron [J]. Hot Work. Technol., 2006, 35: 30
[93] 刘少平, 苏 丹, 孙 凯等. 钒、钛对高铬铸铁中碳化物形态及耐磨性的影响 [J]. 热加工工艺, 2006, 35: 30
[94] Rao Q C, Zhang Y Z. Effect of aluminum on microstructure and mechanical properties of medium chromium cast iron [J]. Hot Work. Technol., 1987, (4): 15
[94] 饶启昌, 张永振. 铝对中铬铸铁组织与机械性能影响规律的研究 [J]. 热加工工艺, 1987, (4): 15
[95] Zhang Y W, Wen Z Q, Wang Q S, et al. Effect of thermoplastic deformation on the structure and properties of high chrominm cast iron [J]. Hot Work. Technol., 1990, (1): 22
[95] 张永维, 温质清, 王庆顺等. 热塑性变形对高铬铸铁组织和性能的影响 [J]. 热加工工艺, 1990, (1): 22
[96] Sun X, Li D, Li J M, et al. Research on the forgeability of high chromium cast iron and the influence of forging process on mechanical properties [J]. J. Taiyuan Univ. Technol., 1988, 19: 10
[96] 孙 逊, 李 达, 李晋敏等. 高铬铸铁可锻性及锻造过程对机械性能的影响 [J]. 太原工业大学学报, 1988, 19: 10
[97] Song X F, Xing S M. Effect of heat treatment on carbide morphology of Cr35 high chromium cast iron [A]. The 7th National Conference of Materials Science and Image Science and Technology [C]. Beijing: Chinese Society of Stereology, 2009: 6
[97] 宋新丰, 邢书明. 热处理对Cr35高铬铸铁碳化物形态的影响 [A]. 第七届全国材料科学与图像科技学术会议论文集 [C]. 北京: 中国体视学学会, 2009: 6
[98] Yin W J. Effects of heat treatment and vanadium-titanium alloy on carbide morphology and mechanical properties of high chromium cast iron [D]. Baotou: Inner Mongolia University of Science & Technology, 2012
[98] 尹卫江. 热处理及钒-钛合金对高铬铸铁碳化物形态和力学性能的影响 [D]. 包头: 内蒙古科技大学, 2012
[99] Gu J H, Xiao P G, Song J Y, et al. Sintering of a hypoeutectic high chromium cast iron as well as its microstructure and properties [J]. J. Alloys Compd., 2018, 740: 485
[100] Lu R Q. Preparation and its property enhancing mechanism of sintered hypoeutectic high chromium cast iron with 20% Cr [D]. Changsha: Hunan University, 2018
[100] 卢瑞青. 20%Cr亚共晶高铬铸铁烧结制备与增强机理研究 [D]. 长沙: 湖南大学, 2018
[101] Wiengmoon A, Chairuangsri T, Brown A, et al. Microstructural and crystallographical study of carbides in 30wt.%Cr cast irons [J]. Acta Mater., 2005, 53: 4143
[102] Du H S, Zhai Q J, Xian G G. A study on shrinkage hole and shrinkage porosity of the suspension pouring of the steel castings [J]. Spec. Cast. Nonferrous Alloys, 1998, 5: 14
[102] 杜怀生, 翟启杰, 线国高. 悬浮铸造对铸钢件缩孔及缩松的影响 [J]. 特种铸造及有色合金, 1998, 5: 14
[103] Fu H, Xiao Q, Xing J. The development of high speed steel rolls by extrusion casting [J]. Ironmak. Steelmak., 2004, 31: 66
[104] Hwang K C, Lee S, Lee H C. Effects of alloying elements on microstructure and fracture properties of cast high speed steel rolls: Part I: Microstructural analysis [J]. Mater. Sci. Eng., 1998, A254: 282
[105] Park J W, Lee C H, Lee S. Composition, microstructure, hardness, and wear properties of high-speed steel rolls [J]. Metall. Mater. Trans., 1999, 30A: 399
[106] Liu H F, Liu Y H, Yu S R. Investigation of the wear resistance of high carbon high vanadium high speed steel [J]. Tribology, 2000, 20(6): 401
[106] 刘海峰, 刘耀辉, 于思荣. 高碳高钒系高速钢的耐磨性研究 [J]. 摩擦学学报, 2000, 20(6): 401
[107] Li C S, Liu X H, Wang G D, et al. Experimental investigation on thermal wear of high speed steel rolls in hot strip rolling [J]. Mater. Sci. Technol., 2002, 18: 1581
[108] Wei S Z, Zhu J H, Xu L J, et al. Effect of retained austenite on performance of high-vanadium high-speed steel [J]. Trans. Mater. Heat Treat., 2005, 26: 44
[108] 魏世忠, 朱金华, 徐流杰等. 残余奥氏体量对高钒高速钢性能的影响 [J]. 材料热处理学报, 2005, 26: 44
[109] Ogi K. Solidification of alloy white cast iron [J]. J. Jpn. Foundry Eng. Soc., 1994, 66: 764
[109] 大城桂作. 合金白铸铁の凝固 [J]. 铸物, 1994, 66: 764
[110] Xu L J, Wei S Z, Long R, et al. Research on morphology and distribution of vanadium carbide in high vanadium high speed steel [J]. Foundry, 2003, 52: 1069
[110] 徐流杰, 魏世忠, 龙 锐等. 高钒高速钢中碳化钒的形态分布研究 [J]. 铸造, 2003, 52: 1069
[111] Zhou H, Wang J G, Jia S S, et al. Solidified microstructures and phases of high speed steels containing different V and C content [J]. Acta Metall. Sin., 1997, 33: 838
[111] 周 宏, 王金国, 贾树盛等. 不同钒、碳含量高速钢的凝固组织及相组成 [J]. 金属学报, 1997, 33: 838
[112] Peng T, Ni F, Wei S Z, et al. Solidification process and phases of V9 HSS with different carbon content [J]. Foundry, 2006, 55: 499
[112] 彭 涛, 倪 锋, 魏世忠等. 不同碳含量V9高钒合金的凝固过程及相组成 [J]. 铸造, 2006, 55: 499
[113] Xu L J. Microstructure, wear performance and electromagnetic composite forming technology of high vanadium high speed steel for rolls [D]. Xi'an: Xi'an Jiaotong University, 2007
[113] 徐流杰. 轧辊用高钒高速钢组织、磨损性能及电磁复合成型技术 [D]. 西安: 西安交通大学, 2007
[114] Xu L J, Wei S Z, Xing J D, et al. Phase structure and fine microstructure of in-situ vanadium carbides in cast high-vanadium high-speed steel [J]. Met. Mater. Int., 2006, 12: 371
[115] Zhou H, Wang J G, Su Y D, et al. Heat treatment of high carbon vanadium high speed steel for roller [J]. Iron Steel, 2000, 35(1): 47
[115] 周 宏, 王金国, 苏源德等. 轧辊用高碳、钒高速钢系合金的热处理 [J]. 钢铁, 2000, 35(1): 47
[116] Lee J H, Oh J C, Park J W, et al. Effects of tempering temperature on wear resistance and surface roughness of a high speed steel roll [J]. ISIJ Int., 2001, 41: 859
[117] Xu L J, Xing J D, Wei S Z, et al. Optimization of heat treatment technique of high-vanadium high-speed steel based on back-propagation neural networks [J]. Mater. Des., 2007, 28: 1425
[118] Fu H G. Research and application of high speed steel rolls [J]. China Molybd. Ind., 1998, 22(6): 17
[118] 符寒光. 高速钢轧辊的研究与应用 [J]. 中国钼业, 1998, 22(6): 17
[119] Fu H G, Liu J H, Yin Z H. Progress in research of foreign high speed steel composite rolls [J]. Foundry, 1999, (2): 44
[119] 符寒光, 刘金海, 殷作虎. 国外高速钢复合轧辊研究的进展 [J]. 铸造, 1999, (2): 44
[120] Wankhede U, Samarasekera I V. Thermal behavior of high speed steel work rolls in the finishing stands of a hot strip mill [J]. Iron Stelm., 1997, 24: 55
[121] Barzan D. The use and performance of high speed steel rolls at Inland's 80 inch hot strip mill [J]. Iron Steelmak., 1996, (2): 27
[122] McManus G J. Speedy advance predicted for high speed steel rolls [J]. Iron Steel Eng., 1999, 76: 59
[123] Gong K L, Zhang X. Production method of centrifugal composite high speed steel roll [P]. Chin Pat, 1179368A, 1997
[123] 宫开令, 张 欣. 离心复合高速钢轧辊的生产方法 [P]. 中国专利, 1179368A, 1997)
[124] Gong K L, Dong Y J, Gao C L. Research and manufacture of compound high speed steel rolls [J]. Iron Steel, 1998, 33(3): 67
[124] 宫开令, 董雅军, 高春利. 高速钢复合轧辊的研制及生产 [J]. 钢铁, 1998, 33(3): 67
[125] Wei S Z, Zhu J H, Xu L J. Effects of vanadium and carbon on microstructures and abrasive wear resistance of high speed steel [J]. Tribol. Int., 2006, 39: 641
[126] Xu L J, Xing J D, Wei S Z, et al. Study on relative wear resistance and wear stability of high-speed steel with high vanadium content [J]. Wear, 2007, 262: 253
[127] Xu L J, Xing J D, Wei S Z, et al. Optimisation of chemical composition of high speed steel with high vanadium content for abrasive wear using an artificial neural network [J]. Mater. Des., 2007, 28: 1031
[128] Xu L J, Wei S Z, Long R, et al. Abrasive wear behavior of high vanadium high speed steel [J]. Min. Process. Equip., 2003, 31(11): 77
[128] 徐流杰, 魏世忠, 龙 锐等. 高钒高速钢的磨粒磨损行为研究 [J]. 矿山机械, 2003, 31(11): 77
[129] Xu L J, Wei S Z, Xiao F N, et al. Effects of carbides on abrasive wear properties and failure behaviours of high speed steels with different alloy element content [J]. Wear, 2017, 376-377: 968
[130] Ma Z Z, Long R, Wei S Z. Experimental study of the impact abrasive wear property of high vanadium high speed steel [J]. Foundry, 2005, 54: 549
[130] 马陟祚, 龙 锐, 魏世忠. 高钒高速钢的冲击磨料磨损性能试验 [J]. 铸造, 2005, 54: 549
[131] Ma Z Z, Zhang Y Z, Wei S Z, et al. Impact wear and wear mechanism study of high vanadium high speed steel [J]. Tribology, 2006, 26: 169
[131] 马陟祚, 张永振, 魏世忠等. 高钒高速钢冲击磨损性能与机理的研究 [J]. 摩擦学学报, 2006, 26: 169
[132] Xu L J, Xing J D, Wei S Z, et al. Comparative investigation to rolling wear properties between high-vanadium high-speed steel and high-chromium cast iron [J]. J. Xi'an Jiaotong Univ., 2006, 40: 275
[132] 徐流杰, 邢建东, 魏世忠等. 高钒高速钢与高铬铸铁的滚动磨损性能对比研究 [J]. 西安交通大学学报, 2006, 40: 275
[133] Xu L J, Xing J D, Wei S Z, et al. Investigation on wear behaviors of high-vanadium high-speed steel compared with high-chromium cast iron under rolling contact condition [J]. Mater. Sci. Eng., 2006, A434: 63
[134] Xu L J, Wei S Z, Xing J D, et al. Effect of carbides on crack behavior within rolls under cold rolling condition [J]. Chin. J. Mech. Eng., 2008, 44(9): 50
[134] 徐流杰, 魏世忠, 邢建东等. 碳化物对冷轧条件下轧辊中裂纹行为的影响 [J]. 机械工程学报, 2008, 44(9): 50
[135] Ji Y P, Wu S J, Xu L J, et al. Effect of carbon contents on dry sliding wear behavior of high vanadium high speed steel [J]. Wear, 2012, 294-295: 239
[136] Ji Y P, Li Y, Wei S Z, et al. Study on wear properties of high-vanadium high-speed steel under dry sliding condition [J]. Hot Work. Technol., 2006, 35(20): 7
[136] 季英萍, 李 炎, 魏世忠等. 高钒高速钢干滑动磨损性能研究 [J]. 热加工工艺, 2006, 35(20): 7
[137] Xu L J, Wei S Z, Xing J D, et al. Effects of carbon content and sliding ratio on wear behavior of high-vanadium high-speed steel (HVHSS) under high-stress rolling-sliding contact [J]. Tribol. Int., 2014, 70: 34
[138] Xu L J, Wei S Z, Zhang Y Z, et al. Rolling/sliding wear property and failure behavior of high-vanadium high-speed steel for rolls [J]. Tribology, 2009, 29: 55
[138] 徐流杰, 魏世忠, 张永振等. 轧辊用高钒高速钢的滚-滑动磨损性能及失效行为研究 [J]. 摩擦学学报, 2009, 29: 55
[139] Xu L J, Wei S Z, Han M R, et al. Effect of carbides on wear characterization of high-alloy steels under high-stress rolling-sliding condition [J]. Tribol. Trans., 2014, 57: 631
[140] Zhang F C, Yang Z N. Development of and perspective on high-performance nanostructured bainitic bearing steel [J]. Engineering, 2019, 5: 319
[141] Zhang P, Zhang F C, Yan Z G, et al. Wear property of low-temperature bainite in the surface layer of a carburized low carbon steel [J]. Wear, 2011, 271: 697
[142] Yang J, Wang T S, Zhang B, et al. Sliding wear resistance and worn surface microstructure of nanostructured bainitic steel [J]. Wear, 2012, 282-283: 81
[143] Miab S A, Avishan B, Yazdani S. Wear resistance of two nanostructural bainitic steels with different amounts of Mn and Ni [J]. Acta Metall. Sin. (Engl. Lett., 2016, 29: 587
[144] Leiro A, Vuorinen E, Sundin K G, et al. Wear of nano-structured carbide-free bainitic steels under dry rolling-sliding conditions [J]. Wear, 2013, 298-299: 42
[145] Springer H, Fernandez A R, Duarte M J, et al. Microstructure refinement for high modulus in-situ metal matrix composite steels via controlled solidification of the system Fe-TiB2 [J]. Acta Mater., 2015, 96: 47
[146] Cao X J, Jin J F, Zhang Y B, et al. Electroless copper plating on different types of ceramic particles and its effects on mechanical properties of particulate reinforced iron matrix composites [J]. Chin. J. Mater. Res., 2015, 29: 17
[146] 曹新建, 金剑锋, 张跃波等. 陶瓷颗粒表面镀铜对陶瓷颗粒增强铁基复合材料性能的影响 [J]. 材料研究学报, 2015, 29: 17
[147] Hou Q Y. Microstructure and wear resistance of steel matrix composite coating reinforced by multiple ceramic particulates using SHS reaction of Al-TiO2-B2O3 system during plasma transferred arc overlay welding [J]. Surf. Coat. Technol., 2013, 226: 113
[148] Zhong L S, Hojamberdiev M, Ye F X, et al. Fabrication and microstructure of in situ vanadium carbide ceramic particulates-reinforced iron matrix composites [J]. Ceram. Int., 2013, 39: 731
[1] XIONG Tianying, WANG Jiqiang. Research Progress of Cold Spray in Institute of Metal Research, Chinese Academy of Sciences[J]. 金属学报, 2023, 59(4): 537-546.
[2] Jincheng WANG, Chunwen GUO, Junjie LI, Zhijun WANG. Recent Progresses in Competitive Grain Growth During Directional Solidification[J]. 金属学报, 2018, 54(5): 657-668.
[3] Jincheng WANG, Can GUO, Qi ZHANG, Sai TANG, Junjie LI, Zhijun WANG. Recent Progresses in Modeling of Nucleation During Solidification on the Atomic Scale[J]. 金属学报, 2018, 54(2): 204-216.
No Suggested Reading articles found!