Please wait a minute...
Acta Metall Sin  2007, Vol. 43 Issue (6): 637-642     DOI:
Research Articles Current Issue | Archive | Adv Search |
Cite this article: 

. . Acta Metall Sin, 2007, 43(6): 637-642 .

Download:  PDF(219KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Based on the continuum damage mechanics, a new damage model has been developed for fatigue-creep interaction in this paper. This model researched the damage of fatigue, creep and their interaction respectively. In order to apply this model to the practical engineering condition, fatigue-creep interaction experiments have been carried out to research the damage evolution. These tests are conducted at 540℃ under stress control, using a trapezium waveform with the hold-time per cycle. Cylindrical specimens of 1.25Cr0.5Mo steel were used in the fatigue-creep interaction experiments. According to the experiments, the changing rule of mean strain has been studied in this paper. Defining the change of mean strain as the damage variable, damage curves of different stress ranges have been obtained based on the damage model the above damage model. Results showed that the values of damage calculated from the damage variable definition mentioned above were in good agreement with these damage curves. Besides, based on the damage model and the change rules of mean strain, this paper also discusses the failure assessment in engineering. A method to prevent the rupture of engineering components has been proposed in this paper.
Key words:  fatigue      creep      fatigue-creep interaction      damage variable      
Received:  08 December 2006     
ZTFLH:  O346.2  
  TG142.71  
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2007/V43/I6/637

[1]Plumbridge W J,Dean M,Sand Miller D A.Fatigue Eng Mater Struct,1982;5(1):101
[2]Kachanov L M.Isv Akad Nauk SSA Otd Tekh,1958;8: 26
[3]Robotnov Y N.Creep Problems in Structure Members. Amsterdam:North-Holland,1969
[4]Lemaitre J,Chaboche J L.Mechanics of Solid Materials. Cambridge:Cambridge University Press,1990
[5]Krajcinovic D,Lemaitre J.Continuum Damage Mechan- ics:Theory and Application.Berlin:Springer Verlag, 1987:37
[6]Bhattacharya B,Ellingwood B.Int J Solids Struct,1999; 36:1757
[7]Yaguchi M,Nakamura T,Ishikawa A,Asada Y.Nucl Eng Des,1996;162(1):97
[8]Dai Z Y,Zhai J,Li Q.J Southwest Jiaotong Univ,1998; 33(1):30 (戴振雨,翟己,黎强.西南交通大学学报,1998;33(1): 30)
[9]Xiong X R.Jiangxi Sci,2005;23(1):9 (熊先仁.江西科学,2005;23(1):9)
[10]Jing J P,Meng G.Proc CSEE,2003;23(9):167 (荆建平,孟光.中国电机工程学报,2003;23(9):167)
[11]Lou Z W.Principle of Damage Mechanics.Xi'an:Xi'an Jiaotong University Press,1991:104 (楼志文.损伤力学基础.西安:西安交通大学出版社,1991: 104)
[12]Lemaitre J.Nucl Eng Des,1984;80:233
[13]Lemaitre J.J Eng Mater Technol——Trans ASME,1979; 101:284
[14]Lemaitre J,Chaboche J L.Mechanics of Solid Material. Cambridge:Cambridge University Press,1990
[15]Chen L,Jiang J L.Acta Metall Sin,2005;41:157 (陈凌,蒋家羚.金属学报,2005;41:157)
[16]Lemaitre J.J Eng Mater Technol——Trans ASME,1985; 107:83
[17]Tai W H.Eng Fract Mech,1990;37:853
[18]Wang T J.Eng Fract Mech,1992;42:177
[19]Chandrakanth S,Pandey P C.Eng Fract Mech,1995;50: 457
[20]Yang X H,Li N,Jin Z H,Wang T J.Int J Fatigue,1997; 19:687
[21]Wu H Y.Damage Mechanics.Beijing:National Defence Industry Press,1990:29 (吴鸿遥.损伤力学.北京:国防工业出版社,1990:29)
[22]Yang G S.Damage Mechanics and Composite Material Damage.Beijing:National Defence Industry Press,1995: 18 (杨光松.损伤力学与复合材料损伤.北京:国防工业出版社, 1995:18)
[23]Fan Z C,Jiang J L,Chen X D.J Zhejiang Univ(Eng Sci),2006;40:317 (范志超,蒋家羚,陈学东.浙江大学学报(工学版),2006;40: 317)
[24]Yang T C,Chen L,Fan Z C,Chen X D,Jiang J L.Pres- sure Vessel Technol,2005;154(9):6 (杨铁成,陈凌,范志超,陈学东,蒋家羚.压力容器,2005; 154(9):6)
[1] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[2] FENG Qiang, LU Song, LI Wendao, ZHANG Xiaorui, LI Longfei, ZOU Min, ZHUANG Xiaoli. Recent Progress in Alloy Design and Creep Mechanism of γ'-Strengthened Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1125-1143.
[3] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[4] LI Jiarong, DONG Jianmin, HAN Mei, LIU Shizhong. Effects of Sand Blasting on Surface Integrity and High Cycle Fatigue Properties of DD6 Single Crystal Superalloy[J]. 金属学报, 2023, 59(9): 1201-1208.
[5] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[6] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[7] CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1209-1220.
[8] ZHANG Lu, YU Zhiwei, ZHANG Leicheng, JIANG Rong, SONG Yingdong. Thermo-Mechanical Fatigue Cycle Damage Mechanism and Numerical Simulation of GH4169 Superalloy[J]. 金属学报, 2023, 59(7): 871-883.
[9] ZHANG Bin, TIAN Da, SONG Zhuman, ZHANG Guangping. Research Progress in Dwell Fatigue Service Reliability of Titanium Alloys for Pressure Shell of Deep-Sea Submersible[J]. 金属学报, 2023, 59(6): 713-726.
[10] ZHANG Zhefeng, LI Keqiang, CAI Tuo, LI Peng, ZHANG Zhenjun, LIU Rui, YANG Jinbo, ZHANG Peng. Effects of Stacking Fault Energy on the Deformation Mechanisms and Mechanical Properties of Face-Centered Cubic Metals[J]. 金属学报, 2023, 59(4): 467-477.
[11] QI Zhao, WANG Bin, ZHANG Peng, LIU Rui, ZHANG Zhenjun, ZHANG Zhefeng. Effects of Stress Ratio on the Fatigue Crack Growth Rate Under Steady State of Selective Laser Melted TC4 Alloy with Defects[J]. 金属学报, 2023, 59(10): 1411-1418.
[12] LI Xiaolin, LIU Linxi, LI Yating, YANG Jiawei, DENG Xiangtao, WANG Haifeng. Mechanical Properties and Creep Behavior of MX-Type Precipitates Strengthened Heat Resistant Martensite Steel[J]. 金属学报, 2022, 58(9): 1199-1207.
[13] HAN Dong, ZHANG Yanjie, LI Xiaowu. Effect of Short-Range Ordering on the Tension-Tension Fatigue Deformation Behavior and Damage Mechanisms of Cu-Mn Alloys with High Stacking Fault Energies[J]. 金属学报, 2022, 58(9): 1208-1220.
[14] SONG Wenshuo, SONG Zhuman, LUO Xuemei, ZHANG Guangping, ZHANG Bin. Fatigue Life Prediction of High Strength Aluminum Alloy Conductor Wires with Rough Surface[J]. 金属学报, 2022, 58(8): 1035-1043.
[15] ZHOU Hongwei, GAO Jianbing, SHEN Jiaming, ZHAO Wei, BAI Fengmei, HE Yizhu. Twin Boundary Evolution Under Low-Cycle Fatigue of C-HRA-5 Austenitic Heat-Resistant Steel at High Temperature[J]. 金属学报, 2022, 58(8): 1013-1023.
No Suggested Reading articles found!