Please wait a minute...
Acta Metall Sin  2007, Vol. 43 Issue (6): 648-652     DOI:
Research Articles Current Issue | Archive | Adv Search |
Cite this article: 

. . Acta Metall Sin, 2007, 43(6): 648-652 .

Download:  PDF(313KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Erosion resistance of 6 austenitic ferrous alloys has been investigated by comparison with a high chromium iron and 0Cr13Ni5Mo stainless steel used for hydraulic turbine using a rotating disc rig. Based on SEM observations of eroded surface and X-ray diffraction examinations of microstructure as well as simulative measurements of plough-cutting resistant capacity Wp and localized surface layer elasticity he for tested alloys, an attempt has been made to discuss the influence of hardness as well as the capacity Wp, the elasticity he and phase transformation on the resistance of the alloys. The results show micro-failure mechanism is plough-cutting of sand particles in the erosion process. The capacity Wp and the elasticity he are predominant factors characterizing the resistance of the stainless steels and Fe-Mn-Si-Cr shape memory alloys, and there exists a good quantitative formula indicating correlation of the elasticity he and the capacity Wp with their erosion rate Re. The role of phase transformation in the resistance depends on the synthetic effect of the capacity Wp and the elasticity he of induced martensite, and the resistance of 0Mn25Cr7Si6Cu Fe-Mn-Si-Cr shape memory alloy is better than that of the other tested alloys except the high chromium iron because the value of he of induced hexagonal closed-packed martensite is larger.
Key words:  erosion resistance      stainless steel      Fe-Mn-Si-Cr shape memory alloy      plough-cutting resistant capacity     
Received:  30 August 2006     
ZTFLH:  TG115  
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2007/V43/I6/648

[1]Liu W,Zheng Y G,Rao G B,Yao Z M,Ke W.Acta Metall Sin,2002;38:185 (柳伟,郑玉贵,饶光斌,姚治铭,柯伟.金属学报,2002; 38:185)
[2]Wang Y Q,Wang Z,Yang J H,Zhao L C.Scr Mater, 1996;35:1161
[3]Matsumura O,Sumi T,Tamura N,Sakao K.Mater Sci Eng,2000;A279:201
[4]Zhao T C,Sun B C,Du Y L,Fu F,Qi F J.Tribology, 1998;18:272 (赵田臣,孙宝臣,杜颜良,付芳,齐方娟.摩擦学学报,1998; 18:272)
[5]Wang Z Y,Zhu J H.Chin J Mater Res,2003;17:39 (王再友,朱金华.材料研究学报,2003;17:39)
[6]Wang Z Y,Zhu J H.Wear,2004;256:66
[7]Wang Z Y,Zhu J H.Acta Metall Sin,2003;39:273 (王再友,朱金华.金属学报,2003;39:273)
[8]Xiao J M.Metallography of Stainless Steel.Beijing:Met- allurgical Industry Press,1983:64 (肖纪美.不锈钢的金属学问题.北京,冶金工业出版社,1983: 64)
[9]Marshall P.Austenitic Stainless Steel Microstructure and Mechanical Properties.New York:McGraw-Hill,1984: 53
[10]Duan S X.In:Gu S H ed,Abrasion and Cavitation in Hy- draulic Machinery,Tianjin:Editorial board for Abrasion and Cavitation in Hydraulic Machinery of Water Conser- vancy Department and Electric Power Industry Depart- ment,2001:11 (段生孝.见:顾四行主编,水机磨蚀,天津:水利部电力工业部《水机磨蚀》编辑部,2001:11)
[11]Zhao K,Gu C Q,Shen F S,Lou B Z.Wear,1993;162-164: 811
[12]Li S Z,Dong X L.Erosion abrasion and micro-vibration wear of materials.Beijing:China Machine Press,1987: 13 (李诗卓,董祥林.材料冲蚀磨损与微动磨损.北京:机械工业出版社,1987:13)
[13]Feng Z,Ball A.Wear,1999;233-235:674
[14]Chen D A,Sarumi M,Al-Hassai S T S.Wear,1998;214: 64
[15]Magne'e A.Wear,1995;181-183:500
[16]Reshetnyak H,Kuybarsepp J.Wear,1994;177:185-193
[17]Wang Z Y,Chen H P,Xu Y G,Zhu J H.J Xi'an Jiaotong Univ,2002;36:744 (王再友,陈黄浦,徐英鸽,朱金华.西安交通大学学报,2002; 36:744)
[18]Bergeon N,Guenin G,Esnouf C.Mater Sci Eng,1998; A242:87
[19]Zhang W F,Chen Y M,Zhu J H.Metall Mater Trans, 2002;33A:3117
[20]Maxwell P C,Goldberg A,Shyne J G.Metall Trans,1974; 4:1305
[21]Hsu T Y,Xu Z Y.Mater Sci Eng,1999;A273-275:494#
[1] WANG Bin, NIU Mengchao, WANG Wei, JIANG Tao, LUAN Junhua, YANG Ke. Microstructure and Strength-Toughness of a Cu-Contained Maraging Stainless Steel[J]. 金属学报, 2023, 59(5): 636-646.
[2] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
[3] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
[4] HAN En-Hou, WANG Jianqiu. Effect of Surface State on Corrosion and Stress Corrosion for Nuclear Materials[J]. 金属学报, 2023, 59(4): 513-522.
[5] CHANG Litao. Corrosion and Stress Corrosion Crack Initiation in the Machined Surfaces of Austenitic Stainless Steels in Pressurized Water Reactor Primary Water: Research Progress and Perspective[J]. 金属学报, 2023, 59(2): 191-204.
[6] WEN Donghui, JIANG Beibei, WANG Qing, LI Xiangwei, ZHANG Peng, ZHANG Shuyan. Microstructure Evolution at Elevated Temperature and Mechanical Properties of MoNb-Modified FeCrAl Stainless Steel[J]. 金属学报, 2022, 58(7): 883-894.
[7] ZHENG Chun, LIU Jiabin, JIANG Laizhu, YANG Cheng, JIANG Meixue. Effect of Tensile Deformation on Microstructure and Corrosion Resistance of High Nitrogen Austenitic Stainless Steels[J]. 金属学报, 2022, 58(2): 193-205.
[8] YUAN Jiahua, ZHANG Qiuhong, WANG Jinliang, WANG Lingyu, WANG Chenchong, XU Wei. Synergistic Effect of Magnetic Field and Grain Size on Martensite Nucleation and Variant Selection[J]. 金属学报, 2022, 58(12): 1570-1580.
[9] MA Minjing, QU Yinhu, WANG Zhe, WANG Jun, DU Dan. Dynamics Evolution and Mechanical Properties of the Erosion Process of Ag-CuO Contact Materials[J]. 金属学报, 2022, 58(10): 1305-1315.
[10] LUO Wenze, HU Long, DENG Dean. Numerical Simulation and Development of Efficient Calculation Method for Residual Stress of SUS316 Saddle Tube-Pipe Joint[J]. 金属学报, 2022, 58(10): 1334-1348.
[11] CAO Chao, JIANG Chengyang, LU Jintao, CHEN Minghui, GENG Shujiang, WANG Fuhui. Corrosion Behavior of Austenitic Stainless Steel with Different Cr Contents in 700oC Coal Ash/High Sulfur Flue-Gas Environment[J]. 金属学报, 2022, 58(1): 67-74.
[12] PAN Qingsong, CUI Fang, TAO Nairong, LU Lei. Strain-Controlled Fatigue Behavior of Nanotwin- Strengthened 304 Austenitic Stainless Steel[J]. 金属学报, 2022, 58(1): 45-53.
[13] AN Xudong, ZHU Te, WANG Qianqian, SONG Yamin, LIU Jinyang, ZHANG Peng, ZHANG Zhaokuan, WAN Mingpan, CAO Xingzhong. Interaction Mechanism of Dislocation and Hydrogen in Austenitic 316 Stainless Steel[J]. 金属学报, 2021, 57(7): 913-920.
[14] CHEN Guo, WANG Xinbo, ZHANG Renxiao, MA Chengyue, YANG Haifeng, ZHOU Li, ZHAO Yunqiang. Effect of Tool Rotation Speed on Microstructure and Properties of Friction Stir Processed 2507 Duplex Stainless Steel[J]. 金属学报, 2021, 57(6): 725-735.
[15] WANG Jinliang, WANG Chenchong, HUANG Minghao, HU Jun, XU Wei. The Effects and Mechanisms of Pre-Deformation with Low Strain on Temperature-Induced Martensitic Transformation[J]. 金属学报, 2021, 57(5): 575-585.
No Suggested Reading articles found!