Please wait a minute...
Acta Metall Sin  2006, Vol. 42 Issue (3): 290-294     DOI:
Research Articles Current Issue | Archive | Adv Search |
OXIDATION OF AN ELECTRODEPOSITED Cu-30Ni-20Cr NANOCOMPOSITE
中国科学院金属研究所腐蚀与防护国家重点实验室
Cite this article: 

. OXIDATION OF AN ELECTRODEPOSITED Cu-30Ni-20Cr NANOCOMPOSITE. Acta Metall Sin, 2006, 42(3): 290-294 .

Download:  PDF(311KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  A novel electrodeposited Cu-rich Cu-30Ni-20Cr nanocomposite was fabricated on pure copper substrate by co-electrodeposition of Cu-Ni alloy base (mean grain size: 60 nm) with Cr nanoparticles (meansize: 28 nm) from a sodium citrate bath. Compared with electroplated Cu-40Ni alloy film prepared using the same bath, the Cu-30Ni-20Cr nanocomposite exhibited an extremely low oxidation rate in air at 800oC, due to the fast formation of a continuous Cr2O3 scale. The effect of the Cr nanoparticles on the oxidation behavior of the Cu-Ni-Cr nanocomposite films is discussed in detail.
Key words:  Electrodeposition      Cu-Ni-Cr nanocomposite film      Oxidation      
Received:  10 June 2005     
ZTFLH:  TG172.82  
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2006/V42/I3/290

[1] Villars P, Prince A, Okamota H. Handbook of Ternary Alloy Phase Diagrams. Vol.VII, Materirals Park, Ohio: ASM International, 1997
[2] Cao Z Q, Niu Y, Gesmundo F. Oxid Met, 2001; 56: 287
[3] Cao Z Q, Gesmundo F, Al-Omary M, Niu Y. Oxid Met, 2002; 57: 395
[4] Zhang X J, Niu Y, Gesmundo F. Corns Sci, 2004; 46: 2837
[5] Giggins C S, Pettit F S. Trans TMS-AIME, 1969; 245: 2509
[6] Niu Y, Cao Z Q, Gesmundo F, Fame G, Randi G, Wang C L. Corros Sci, 2003; 45: 1125
[7] Zhang Y, Peng X, Wang F. Mater Lett, 2004; 58: 1134
[8] Zhou Y B, Peng X, Wang F. Scr Mater, 2004; 50: 1429
[9] Peng X, Zhou Y B, Zhang Y, Wang F H. Mater Sci Forum, 2004; 461-464: 409
[10] Peng X, Li T, Wu W T F. Oxid Met, 1999; 51: 291
[11] Peng X, Ping D H, Li T F, Wu W T. J Electrochem Soc, 1998; 145: 389
[12] Guglielmi N. Trans Inst Met Finish, 1972; 119: 1009
[13] Sartell B J A, Li C H. Trans ASM, 1962; 55: 159
[14] Whittle D P, Wood G C. Corros Sci, 1968; 1968: 295
[15] Haugrud R. Oxid Met, 1999; 52: 427
[16] Haugrud R. Corros Sci, 2000; 42: 383
[17] Gesmundo F, Viani F, Niu Y, Douglass D L. Oxid Met, 1993; 40: 373
[18] Gesmundo F, Viani F, Niu Y. Oxid Met, 1994; 42: 409
[19] Gesmundo F, Gleeson B. Oxid Met, 1995; 44: 211
[20] Chakrabarti D J, Laughlin D E. Bull Alloy Phase Diagrams, 1984; 5: 59
[21] Hart E W. Ada Metall, 1957; 5: 597
[22] Atkinson A. Solid State Ionics, 1984; 12: 309
[1] HUANG Ding, QIAO Yanxin, YANG Lanlan, WANG Jinlong, CHEN Minghui, ZHU Shenglong, WANG Fuhui. Effect of Shot Peening of Substrate Surface on Cyclic Oxidation Behavior of Sputtered Nanocrystalline Coating[J]. 金属学报, 2023, 59(5): 668-678.
[2] SHEN Zhao, WANG Zhipeng, HU Bo, LI Dejiang, ZENG Xiaoqin, DING Wenjiang. Research Progress on the Mechanisms Controlling High-Temperature Oxidation Resistance of Mg Alloys[J]. 金属学报, 2023, 59(3): 371-386.
[3] LIU Laidi, DING Biao, REN Weili, ZHONG Yunbo, WANG Hui, WANG Qiuliang. Multilayer Structure of DZ445 Ni-Based Superalloy Formed by Long Time Oxidation at High Temperature[J]. 金属学报, 2023, 59(3): 387-398.
[4] LI Xin, JIANG He, YAO Zhihao, DONG Jianxin. Theoretical Calculation and Analysis of the Effect of Oxygen Atom on the Grain Boundary of Superalloy Matrices Ni, Co and NiCr[J]. 金属学报, 2023, 59(2): 309-318.
[5] XU Wenguo, HAO Wenjiang, LI Yingju, ZHAO Qingbin, LU Bingyu, GUO Heyi, LIU Tianyu, FENG Xiaohui, YANG Yuansheng. Effects of Trace Aluminum and Titanium on High Temper-ature Oxidation Behavior of Inconel 690 Alloy[J]. 金属学报, 2023, 59(12): 1547-1558.
[6] HU Min, ZHOU Shengyu, GUO Jingyuan, HU Minghao, LI Chong, LI Huijun, WANG Zumin, LIU Yongchang. Oxidation Behavior of Micro-Regions in Multiphase Ni3Al-Based Superalloys[J]. 金属学报, 2023, 59(10): 1346-1354.
[7] JIN Xinyan, CHU Shuangjie, PENG Jun, HU Guangkui. Effect of Dew Point on Selective Oxidation and Decarburization of 0.2%C-1.5%Si-2.5%Mn High Strength Steel Sheet During Continuous Annealing[J]. 金属学报, 2023, 59(10): 1324-1334.
[8] CONG Hongda, WANG Jinlong, WANG Cheng, NING Shen, GAO Ruoheng, DU Yao, CHEN Minghui, ZHU Shenglong, WANG Fuhui. A New Design Inorganic Silicate Composite Coating and Its Oxidation Behavior at High Temperature in Steam Atmosphere[J]. 金属学报, 2022, 58(8): 1083-1092.
[9] XIE Leipeng, SUN Wenyao, CHEN Minghui, WANG Jinlong, WANG Fuhui. Effects of Processing on Microstructures and Properties of FGH4097 Superalloy[J]. 金属学报, 2022, 58(8): 992-1002.
[10] HANG Tao, XUE Qi, LI Ming. A Review on Metal Micro-Nanostructured Array Materials Routed by Template-Free Electrodeposition[J]. 金属学报, 2022, 58(4): 486-502.
[11] ZHAO Xiaofeng, LI Ling, ZHANG Han, LU Jie. Research Progress in High-Entropy Alloy Bond Coat Material for Thermal Barrier Coatings[J]. 金属学报, 2022, 58(4): 503-512.
[12] SU Kaixin, ZHANG Jiwang, ZHANG Yanbin, YAN Tao, LI Hang, JI Dongdong. High-Cycle Fatigue Properties and Residual Stress Relaxation Mechanism of Micro-Arc Oxidation 6082-T6 Aluminum Alloy[J]. 金属学报, 2022, 58(3): 334-344.
[13] PENG Jun, JIN Xinyan, ZHONG Yong, WANG Li. Influence of Substrate Surface Structure on the Galvanizability of Fe-16Mn-0.7C-1.5Al TWIP Steel Sheet[J]. 金属学报, 2022, 58(12): 1600-1610.
[14] GAO Yunming, HE Lin, QIN Qingwei, LI Guangqiang. ZrO2 Solid Electrolyte Aided Investigation on Electrodeposition in Na3AlF6-SiO2 Melt[J]. 金属学报, 2022, 58(10): 1292-1304.
[15] CAO Chao, JIANG Chengyang, LU Jintao, CHEN Minghui, GENG Shujiang, WANG Fuhui. Corrosion Behavior of Austenitic Stainless Steel with Different Cr Contents in 700oC Coal Ash/High Sulfur Flue-Gas Environment[J]. 金属学报, 2022, 58(1): 67-74.
No Suggested Reading articles found!