Please wait a minute...
Acta Metall Sin  2018, Vol. 54 Issue (8): 1122-1130    DOI: 10.11900/0412.1961.2018.00011
Orginal Article Current Issue | Archive | Adv Search |
Kinetics of (Ti, V, Mo)C Precipitated in γ /α Matrix of Ti-V-Mo Complex Microalloyed Steel
Ke ZHANG1,2(), Xinjun SUN3, Mingya ZHANG1,2, Zhaodong LI3, Xiaoyu YE4, Zhenghai ZHU1,2, Zhenyi HUANG1,2, Qilong YONG3
1 School of Metallurgical Engineering, Anhui University of Technology, Maanshan 243032, China
2 Key Laboratory of Metallurgical Emission Reduction & Resources Recycling, Ministry of Education, Anhui University of Technology, Maanshan 243032, China;
3 Institute of Structural Steels, Central Iron and Steel Research Institute, Beijing 100081, China
4 State Key Laboratory of Vanadium and Titanium Resources Comprehensive Utilization, Panzhihua Group Co., Ltd., Panzhihua 617000, China
Cite this article: 

Ke ZHANG, Xinjun SUN, Mingya ZHANG, Zhaodong LI, Xiaoyu YE, Zhenghai ZHU, Zhenyi HUANG, Qilong YONG. Kinetics of (Ti, V, Mo)C Precipitated in γ /α Matrix of Ti-V-Mo Complex Microalloyed Steel. Acta Metall Sin, 2018, 54(8): 1122-1130.

Download:  HTML  PDF(852KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In recent years, in order to develop the higher strength steel, the idea of increasing the strength of the hot rolled ferritic steel via complex Ti microalloyed technology has been widely accepted and applied, such as Ti-Nb, Ti-Mo, Ti-Nb-Mo and Ti-V-Mo. It is important to know the thermodynamics and kinetics of complex Ti contained precipitates for controlling the precipitation behavior of carbides and improving the mechanical properties of complex Ti microalloyed steels. In this work, according to the classical nulceation and growth kinetics theory and the solubility products of various carbides in austenite/ferrite (γ /α) matrix, the precipitation-time-temperature (PTT) curve, nucleation-time (NrT) curve and the nucleation parameters of (Ti, V, Mo)C carbides in γ /α matrix of Ti-V-Mo complex microalloyed steel were obtained through the theoretical calculation. Moreover, the effects of deformation stored energy and the amount of strain-induced precipitation in γ matrix on the precipitation kinetics of (Ti, V, Mo)C were discussed. The results showed that the PTT diagrams of (Ti, V, Mo)C in γ /α matrix showed "C" shape curve, while the NrT curves showed inverse "C" shape curve. The nose temperature of (Ti, V, Mo)C in γ matrix is about 1020~1050 ℃. Increasing the deformation stored energy of γ matrix moves the PPT curve to the upper left. In addition, the NrT curve of (Ti, V, Mo)C precipitated in α matrix moves towards to the lower right by properly increasing the amount of strain-induced precipitation in γ matrix. The maximum nucleation rate temperature of (Ti, V, Mo)C in ferrite is around 630~650 ℃ from the theoretical calculation, which agrees well with the result of experimental observation.

Key words:  (Ti,V,Mo)C      PTT curve      NrT curve      kinetics      theoretical calculation     
Received:  10 January 2018     
ZTFLH:  TG142.1  
Fund: Supported by National Natural Science Foundation of China (Nos.51704008 and 51674004), National Key Research and Development Program of China (Nos.2017YFB0305100 and 2017YFB0304700), National Basic Research Program of China (No.2015CB654803), Science and Technology Foundation of China Iron & Steel Research Institute Group (No.15G60530A), Youth Scientific Research Foundation of Anhui University of Technology (No.QZ201603) and the Opening Foundation of State Key Laboratory of Vanadium and Titanium Resources Comprehensive Utilization (No.18100009)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2018.00011     OR     https://www.ams.org.cn/EN/Y2018/V54/I8/1122

Element Qγ / kJ Qα / kJ
Ti 251 248
V 264 241
Mo 240 229
Table 1  Activation energies of Ti, V and Mo in γ and α matrix[15]
Carbide Lattice constant / nm Linear expansion coefficient / K-1
TiC 0.4318[21] 7.86×10-6 [21]
VC 0.4182[21] 8.29×10-6 [21]
MoC 0.4277[23] 6.88×10-6 [24]
Table 2  Lattice constants and linear expansion coefficients of TiC, VC and MoC at room temperature[21,23,24]
Fig.1  Changes of balance contents of solid solution [Ti], [V], [Mo] and [C] of microalloyed elements with temperature in Ti-V-Mo steel
Temperature 0 Jmol-1 1360 Jmol-1 3820 Jmol-1
dd*/ nm lg(I/K)d lg(t0.05/t0) dd*/ nm lg(I/K)d lg(t0.05/t0) dd*/ nm lg(I/K)d lg(t0.05/t0)
800 0.46 -15.180 20.83 0.41 -15.07 20.72 0.30 -15.13 20.78
850 0.55 -15.125 20.18 0.49 -14.86 19.91 0.39 -14.65 19.71
900 0.62 -15.135 19.62 0.55 -14.72 19.20 0.45 -14.34 18.82
950 0.67 -15.041 18.98 0.59 -14.53 18.47 0.48 -14.04 17.98
1000 0.73 -15.043 18.49 0.64 -14.40 17.84 0.51 -13.78 17.23
1050 0.83 -15.519 18.53 0.72 -14.56 17.57 0.57 -13.66 16.67
1100 1.02 -17.024 19.64 0.87 -15.30 17.92 0.66 -13.77 16.39
1150 1.37 -21.270 23.54 1.11 -17.38 19.65 0.80 -14.31 16.58
1200 2.17 -36.908 38.85 1.58 -23.73 25.68 1.04 -15.89 17.84
Table 3  Calculation results of nucleation parameters of (Ti, V, Mo)C at different deformation energies in austenite
Fig.2  NrT (a) and PTT (b) curves of (Ti, V, Mo)C precipitated in austenite
Material Carbide Method Tf / ℃ Ref.
0.04C-0.1Ti-0.5Mn TiC Stress relaxation 910 [31]
0.04C -0.1Ti-1.5Mn TiC Stress relaxation 890 [32]
0.04C -0.10Ti-0.21Mo-1.60Mn (Ti, Mo)C Stress relaxation 925 [32]
0.31C-0.015Ti-0.04Nb-0.09V-0.43Mo-1.6Mn (Ti, V, Nb)C Stress relaxation 940 [33]
0.08C-0.02Ti-0.067Nb-0.056V-1.85Mn (Ti, V, Nb)C Electrical resistivity 950 [34]
0.10C-0.12Ti-1.60Mn TiC Flow curve 1025 [36]
0.18C-0.13V-0.036Ti-1.5Mn (Ti, V)(C, N) Stress relaxation 1040 [37]
0.16C-0.2Ti-0.4V-0.4Mo-1.0Mn (Ti, V, Mo)C Theoretical calculation 1050 Present work
Table 4  The fastest precipitation temperatures (Tf) of carbides in austenite of various Ti microalloyed steels
Temperature 10% 30% 50%
lg(I/K)d lg(t0.05/t0) lg(I/K)d lg(t0.05/t0) lg(I/K)d lg(t0.05/t0)
500 -17.19 27.94 -17.11 27.82 -16.83 27.44
550 -16.72 26.44 -16.63 26.31 -16.35 25.95
600 -16.40 25.21 -16.31 25.08 -16.07 24.77
650 -16.25 24.24 -16.19 24.15 -16.03 23.93
700 -16.32 23.57 -16.33 23.55 -16.30 23.48
750 -16.70 24.30 -16.84 23.32 -17.06 24.58
800 -17.59 25.58 -17.99 23.96 -18.63 24.56
Table 5  Calculation results of nucleation parameters of (Ti, V, Mo)C in ferrite under strain induced precipitation 10%, 30% and 50%
Fig.3  Influences of the amount of strain induced precipitation on NrT (a) and PTT (b) curves of (Ti, V, Mo)C in ferrite under different strain induced precipitations at 920 ℃
Fig.4  Variations of hardness as a function of coiling temperatures for the Ti-V-Mo, Ti-Mo and Ti steels
[1] Chen J, Lü M Y, Tang S, et al.Microstructure, mechanical properties and interphase precipitation behaviors in V-Ti microalloyed steel[J]. Acta Metall. Sin., 2014, 50: 524(陈俊, 吕梦阳, 唐帅等. V-Ti微合金钢的组织性能及相间析出行为[J]. 金属学报, 2014, 50: 524)
[2] Mukherjee S, Timokhina I, Zhu C, et al.Clustering and precipitation processes in a ferritic titanium-molybdenum microalloyed steel[J]. J. Alloys Compd., 2017, 690: 621
[3] Zhang K, Li Z D, Wang Z Q, et al.Precipitation behavior and mechanical properties of hot-rolled high strength Ti-Mo-bearing ferritic sheet steel: The great potential of nanometer-sized (Ti, Mo)C carbide[J]. J. Mater. Res., 2016, 31: 1254
[4] Zhang K, Li Z D, Sun X J, et al.Development of Ti-V-Mo complex microalloyed hot-rolled 900-MPa-grade high-strength steel[J]. Acta Metall. Sin.(Engl. Lett.), 2015, 28: 641
[5] Zhang K, Yong Q L, Sun X J, et al.Effect of coiling temperature on micro-structure and mechanical properties of Ti-V-Mo complex microalloyed ultra-high strength steel[J]. Acta Metall. Sin., 2016, 52: 529(张可, 雍岐龙, 孙新军等. 卷取温度对Ti-V-Mo复合微合金化超高强度钢组织及力学性能的影响[J]. 金属学报, 2016, 52: 529)
[6] Chun E J, Do H, Kim S, et al.Effect of nanocarbides and interphase hardness deviation on stretch-flangeability in 998 MPa hot-rolled steels[J]. Mater. Chem. Phys., 2013, 140: 307
[7] Yi H L, Du L X, Wang G D, et al.Development of Nb-V-Ti hot-rolled high strength steel with fine ferrite and precipitation strengthening[J]. J. Iron Steel Res. Int., 2009, 16: 72
[8] Chen C Y, Chen C C, Yang J R.Microstructure characterization of nanometer carbides heterogeneous precipitation in Ti-Nb and Ti-Nb-Mo steel[J]. Mater. Charact., 2014, 88: 69
[9] Zhang K, Yong Q L, Sun X J, et al.Effect of tempering temperature on micro-structure and mechanical properties of high Ti microalloyed directly quenched high strength steel[J]. Acta Metall. Sin., 2014, 50: 913(张可, 雍岐龙, 孙新军等. 回火温度对高Ti微合金直接淬火高强钢组织及性能的影响[J]. 金属学报, 2014, 50: 913)
[10] Jang J H, Heo Y U, Lee C H, et al.Interphase precipitation in Ti-Nb and Ti-Nb-Mo bearing steel[J]. Mater. Sci. Technol., 2013, 29: 309
[11] Strid J, Easterling K E.On the chemistry and stability of complex carbides and nitrides in microalloyed steels[J]. Acta Metall., 1985, 33: 2057
[12] Adrian H.Thermodynamic model for precipitation of carbonitrides in high strength low alloy steels containing up to three microalloying elements with or without additions of aluminium[J]. Mater. Sci. Technol., 1992, 8: 406
[13] Rios P R.Expression for solubility product of niobium carbonitride in austenite[J]. Mater. Sci. Technol., 1988, 4: 324
[14] Rios P R.Method for the determination of mole fraction and composition of a multicomponent f.c.c. carbonitride[J]. Mater. Sci. Eng., 1991, A142: 87
[15] Yong Q L.Secondary Phases in Steel [M]. Beijing: Metallurgical Industry Press, 2006: 1(雍岐龙. 钢铁材料中的第二相 [M]. 北京: 冶金工业出版社, 2006: 1)
[16] Cao J C.Study on the precipitation of carbontride Nb-Mo complex microalloyed steel [D]. Kunming: Kunming University of Science and Technology, 2006(曹建春. 铌钼复合微合金钢中碳氮化物沉淀析出研究 [D]. 昆明: 昆明理工大学, 2006)
[17] Yang G W.Study on controlling the refinement and mechanism of microstructure of a novel ultrahigh strength martensitic steel [D]. Kunming: Kunming University of Science and Technology, 2013(杨庚蔚. 新型超高强度马氏体钢组织超细化控制技术及机理研究 [D]. 昆明: 昆明理工大学, 2013)
[18] Chen H Y, Liu S L, Liu S, et al.Thermodynamic calculation model and analysis of complex carbonitride precipitation behavior in low alloyed steel containing Mo[J]. Trans. Mater. Heat Treat., 2014, 35(6): 207(陈泓业, 刘胜利, 刘爽等. 含Mo低合金钢复合碳氮化物的析出热力学计算模型及分析[J]. 材料热处理学报, 2014, 35(6): 207)
[19] Yong Q L, Chen M X, Pei H Z, et al.Theoretical calculation for PTT curve of microalloy carbonitride precipitated in ferrite[J]. J. Iron Steel Res., 2006, 18(3): 30(雍岐龙, 陈明昕, 裴和中等. 微合金碳氮化物在铁素体中沉淀析出的PTT曲线的理论计算[J]. 钢铁研究学报, 2006, 18(3): 30)
[20] Yen H W, Chen C Y, Wang T Y, et al.Orientation relationship transition of nanometre sized interphase precipitated TiC carbides in Ti bearing steel[J]. Mater. Sci. Technol., 2013, 26: 421
[21] Zhang K.Study on microstructure tailoring and strengthening mechanisms of Ti-V-Mo complex microalloyed high strength steel [D]. Kunming: Kunming University of Science and Technology, 2016(张可. Ti-V-Mo复合微合金化高强度钢组织调控与强化机理研究 [D]. 昆明: 昆明理工大学, 2016)
[22] Liu W J, Jonas J J.A stress relaxation method for following carbonitride precipitation in austenite at hot working temperatures[J]. Metall. Trans., 1988, 19A: 1403
[23] Willens R H, Buehler E, Matthias B T.Superconductivity of the transition-metal carbides[J]. Phys. Rev., 1967, 159: 327
[24] Krasnenko V, Brik M G.First-principles calculations of hydrostatic pressure effects on the structural, elastic and thermodynamic properties of cubic monocarbides XC (X=Ti, V, Cr, Nb, Mo, Hf)[J]. Solid State Sci., 2012, 14: 1431
[25] Irvine K J, Pickering F B, Gladman T.Grain-refined C-Mn steels[J]. J. Iron Steel Inst., 1967, 205: 161
[26] Narita K.Physical chemistry of the groups IVa(Ti, Zr), Va(V, Nb, Ta) and the rare earth elements in steel[J]. Trans. Iron Steel Inst. Jpn., 1975, 15: 145
[27] Pavlina E J, Speer J G, Van Tyne C J. Equilibrium solubility products of molybdenum carbide and tungsten carbide in iron[J]. Scr. Mater., 2012, 66: 243
[28] Taylor K A.Solubility products for titanium-, vanadium-, and niobium-carbide in ferrite[J]. Scr. Metall. Mater., 1995, 32: 7
[29] Koyama S, Ishii T, Narita K.Solubility of vanadium carbide and nitride in ferritic iron[J]. J. Jpn. Inst. Met., 1973, 37: 191
[30] Wang Z D, Qu J B, Liu X H, et al.Investigation of strain-induced precipitation behavior in a microalloying steel by stress relaxation method[J]. Acta Metall. Sin., 2000, 36: 618(王昭东, 曲锦波, 刘相华等. 松弛法研究微合金钢碳氮化物的应变诱导析出行为[J]. 金属学报, 2000, 36: 618)
[31] Wang Z Q, Mao X P, Yang Z G, et al.Strain-induced precipitation in a Ti micro-alloyed HSLA steel[J]. Mater. Sci. Eng., 2011, A529: 459
[32] Wang Z Q.Precipitation behavior in Ti microalloyed steel and the effects of Mn and Mo [D]. Beijing: Tsinghua University, 2013(王振强. Ti微合金钢中的析出行为与合金元素Mn和Mo的影响 [D]. 北京: 清华大学, 2013)
[33] Liu S, Tang G B, Li J G, et al.Strengthening mechanism and precipitation of complex MC particles in ultra-high strength steel[J]. Iron Steel, 2014, 49(3): 68(刘爽, 唐广波, 李激光等. 超高强度钢中复合MC型颗粒的沉淀析出及强化机制[J]. 钢铁, 2014, 49(3): 68)
[34] Jung J G, Park J S, Kim J, et al.Carbide precipitation kinetics in austenite of a Nb-Ti-V microalloyed steel[J]. Mater. Sci. Eng., 2011, A528: 5529
[35] Wang Z Q, Yong Q L, Sun X J, et al.An analytical model for the kinetics of strain-induced precipitation in titanium micro-alloyed steels[J]. ISIJ Int., 2012, 52: 1661
[36] Akben M G, Weiss I, Jonas J J.Dynamic precipitation and solute hardening in a V microalloyed steel and two Nb steels containing high levels of Mn[J]. Acta Metall., 1981, 29: 111
[37] Pandit A, Murugaiyan A, Podder A S, et al.Strain induced precipitation of complex carbonitrides in Nb-V and Ti-V microalloyed steels[J]. Scr. Mater., 2005, 53: 1309
[1] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[2] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
[3] ZHANG Yuexin, WANG Jujin, YANG Wen, ZHANG Lifeng. Effect of Cooling Rate on the Evolution of Nonmetallic Inclusions in a Pipeline Steel[J]. 金属学报, 2023, 59(12): 1603-1612.
[4] DU Zonggang, XU Tao, LI Ning, LI Wensheng, XING Gang, JU Lu, ZHAO Lihua, WU Hua, TIAN Yucheng. Preparation of Ni-Ir/Al2O3 Catalyst and Its Application for Hydrogen Generation from Hydrous Hydrazine[J]. 金属学报, 2023, 59(10): 1335-1345.
[5] LI Sai, YANG Zenan, ZHANG Chi, YANG Zhigang. Phase Field Study of the Diffusional Paths in Pearlite-Austenite Transformation[J]. 金属学报, 2023, 59(10): 1376-1388.
[6] GUO Lu, ZHU Qianke, CHEN Zhe, ZHANG Kewei, JIANG Yong. Non-Isothermal Crystallization Kinetics of Fe76Ga5Ge5B6P7Cu1 Alloy[J]. 金属学报, 2022, 58(6): 799-806.
[7] TANG Shuai, LAN Huifang, DUAN Lei, JIN Jianfeng, LI Jianping, LIU Zhenyu, WANG Guodong. Co-Precipitation Behavior in Ferrite Region During Isothermal Process in Ti-Mo-Cu Microalloyed Steel[J]. 金属学报, 2022, 58(3): 355-364.
[8] XU Kun, WANG Haichuan, KONG Hui, WU Zhaoyang, ZHANG Zhan. Precipitation Kinetics of Al3Sc in Aluminum Alloys Modeled with a New Grouping Cluster Dynamics Model[J]. 金属学报, 2021, 57(6): 822-830.
[9] ZHU Min, OUYANG Liuzhang. Kinetics Tuning and Electrochemical Performance of Mg-Based Hydrogen Storage Alloys[J]. 金属学报, 2021, 57(11): 1416-1428.
[10] LIU Feng, WANG Tianle. Precipitation Modeling via the Synergy of Thermodynamics and Kinetics[J]. 金属学报, 2021, 57(1): 55-70.
[11] Shuaipeng WANG, Wenhua LUO, Gan LI, Haibo LI, Guangfeng ZHANG. Effect of La Content on Hydriding Kinetics of Ce-La Alloys[J]. 金属学报, 2018, 54(8): 1187-1192.
[12] Shixin XU, Wei YU, Shujia LI, Kun WANG, Qisong SUN. Effects of Pre-Deformation Temperature on Nanobainite Transformation Kinetics and Microstructure[J]. 金属学报, 2018, 54(8): 1113-1121.
[13] Yin BAI, Zhengdong LIU, Jianxin XIE, Hansheng BAO, Zhengzong CHEN. Effect of Pre-Oxidation Treatment on the Behavior of High Temperature Oxidation in Steam of G115 Steel[J]. 金属学报, 2018, 54(6): 895-904.
[14] Hao CHEN, Congyu ZHANG, Jianing ZHU, Zenan YANG, Ran DING, Chi ZHANG, Zhigang YANG. Austenite/Ferrite Interface Migration and Alloying Elements Partitioning: An Overview[J]. 金属学报, 2018, 54(2): 217-227.
[15] Lin GENG, Hao WU, Xiping CUI, Guohua FAN. Recent Progress on the Fabrication of TiAl-Based Composites Sheet by Reaction Annealingof Elemental Foils[J]. 金属学报, 2018, 54(11): 1625-1636.
No Suggested Reading articles found!