Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (10): 1297-1310    DOI: 10.11900/0412.1961.2016.00361
Orginal Article Current Issue | Archive | Adv Search |
CELLULAR AUTOMATON MODELING OF MICRO-STRUCTURE EVOLUTION DURING ALLOY SOLIDIFICATION
Mingfang ZHU1(),Qianyu TANG1,Qingyu ZHANG1,Shiyan PAN2,Dongke SUN3
1 Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing 211189, China
2 Engineering Training Center, Nanjing University of Science and Technology, Nanjing 210094, China
3 Shanghai Key Laboratory of Advanced High-Temperature Materials and Precision Forming, Shanghai Jiao Tong University, Shanghai 200240, China
Cite this article: 

Mingfang ZHU, Qianyu TANG, Qingyu ZHANG, Shiyan PAN, Dongke SUN. CELLULAR AUTOMATON MODELING OF MICRO-STRUCTURE EVOLUTION DURING ALLOY SOLIDIFICATION. Acta Metall Sin, 2016, 52(10): 1297-1310.

Download:  HTML  PDF(7078KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Microstructure evolution during solidification is a complex process controlled by the interplay of heat, solute, capillary, thermodynamics and kinetics. Computational modeling can provide detailed information about the interactions between transport phenomena and phase transformation. Thus, it has emerged as an important and indispensable tool in studying the underlying physics of microstructural formation in solidification. During the last two decades, extensive efforts have been dedicated to explore the numerical models based on the methods of phase field (PF), cellular automaton (CA), front tracking (FT), and level set (LS), for the simulation of solidification microstructures. The CA approach can reproduce various realistic microstructure features with an acceptable computational efficiency, indicating the considerable potential for practical applications. It has, therefore, drawn great interest in academia and achieved remarkable advances in the simulation of microstructures. This paper gives an overview of CA based models, spanning from the meso-scale to the micro-scale, for the prediction of microstruc ture evolution during alloy solidification. The governing equations and numerical algorithms of CA based models and derived coupling models are summarized, including the calculations of nucleation, growth kinetics, interface curvature, surface tension anisotropy and crystallographic orientation, thermal and solutal transport, melt convection utilizing the lattice Boltzmann method (LBM), the coupling of CA with control volume (CV) method, the coupling of CA with CALPHAD approach for multi-component alloy systems, as well as the approaches for eliminating the artificial anisotropy caused by the CA square cells. The main achievements in this field are addressed by presenting examples encompassing a wide variety of problems involving dendritic growth in pure diffusion and with melt convection, eutectic solidification, microstructure formation in multi-component alloys, dendritic growth with gas pore formation, and multi-scale simulation. Finally, the future prospects and challenges for the CA modeling of solidification microstructures are discussed.

Key words:  alloy      solidification      microstructure      numerical modeling      cellular automaton     
Received:  05 August 2016     
ZTFLH:     
Fund: Supported by National Natural Science Foundation of China (Nos.51371051 and 51501091) and Fundamental Research Funds for the Central Universities of China (No. 2242016K40008)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2016.00361     OR     https://www.ams.org.cn/EN/Y2016/V52/I10/1297

Fig.1  Nucleation distributions for nuclei formed at the mold wall and in the bulk of the melt (ΔTs,max and ΔTb,max are the mean nucleation undercoolings, ΔTs,σ and ΔTb,σ are the standard deviations; ns and nb are the maximum densities of nuclei; the subscripts s and b indicate the surface of mold wall and the bulk of the melt, respectively)
Fig.2  Schematic diagram of superimposing cellular automaton (CA) cells with control volume (CV) nodes[14]
Fig.3  Simulated equiaxed dendrite evolution of a Ni-0.4%Cu (mass fraction) alloy with a cooling rate of 1.5 K/s
(a) 1.8 s (b) 3.0 s (c) 4.0 s
Fig.4  Simulated columnar dendritic morphologies in pure diffusion (a) and forced convection (b) for an Al-2.0%Mg-1.0%Si (mass fraction) alloy with a cooling rate of 10 K/s and a temperature gradient of 1000 K/m
Fig.5  Simulated morphology evolution for a hypoeutectic spheroidal graphite (SG) cast iron with C0=4.1%C (mass fraction) (Numbers on the figures show the local carbon concentration (mass fraction, %), fs—total solid fraction, T—temperature)
(a) fs=7%, T=1163 ℃ (b) fs=40%, T=1147 ℃ (c) fs=84%, T=1146 ℃ (d) fs=100%, T=740 ℃
Fig.6  Simulated morphology evolution of primary dendrites and eutectic structure for an Al-7%Si-1.5%Mg (mass fraction) alloy with a cooling rate of 5 K/s in Mg solute field (a~d) and Si solute field (e~h)
(a, e) fs=20% (b, f) fs=55% (c, g) fs=83% (d, h) fs=100%
Fig.7  Simulated evolution of dendritic growth with hydrogen pore formation in an Al-7%Si (mass fraction) alloy with a cooling rate of 10 K/s
(a) fs=10% (b) fs =15% (c) fs =30% (d) fs =55% (e) fs =65% (f) fs =80% (g) the final solidified microstructure (h) the experimental micrograph[95]
[1] Zhao J Z, Li L, Zhang X F.Acta Metall Sin, 2014; 50: 641
[1] (赵九洲, 李璐, 张显飞. 金属学报, 2014; 50: 641)
[2] Zhu M F, Pan S Y, Sun D K, Zhao H L.ISIJ Int, 2010; 50: 1851
[3] Rappaz M, Gandin C A.Acta Metall Mater, 1993; 41: 345
[4] Gandin C A, Rappaz M.Acta Metall Mater, 1994; 42: 2233
[5] Gandin C A, Desbiolles J L, Rappaz M, Thevoz P.Metall Mater Trans, 1999; 30A: 3153
[6] Lee K Y, Hong C P.ISIJ Int, 1997; 37: 38
[7] Cho I S, Hong C P.ISIJ Int, 1997; 37: 1098
[8] Chang Y H, Lee S M, Lee K Y, Hong C P.ISIJ Int, 1998; 38: 63
[9] Lee S Y, Lee S M, Hong C P.ISIJ Int, 2000; 40: 48
[10] Takatani H, Gandin C A, Rappaz M.Acta Mater, 2000; 48: 675
[11] Wu S P, Liu D R, Guo J J, Fu H Z.Trans Nonferrous Met Soc China, 2005; 15: 291
[12] Dilthey U, Pavlik V.In: Thomas B G, Beckermann C eds., Proc 8th Int Conf on Modeling of Casting Welding and Advanced Solidification, Warrendale: The Minerals Metals Materials Society, 1998: 589
[13] Nastac L.Acta Mater, l999; 47: 4253
[14] Zhu M F, Hong C P.ISIJ Int, 2001; 41: 436
[15] Zhu M F, Kim J M, Hong C P.ISIJ Int, 2001; 41: 992
[16] Shin Y H, Hong C P.ISIJ Int, 2002; 42: 359
[17] Xu Q Y, Feng W M, Liu B C, Xiong S M.Acta Metall Sin, 2002; 38: 799
[17] (许庆彦, 冯伟明, 柳百成, 熊守美. 金属学报, 2002; 38: 799)
[18] Wang W, Lee P D, McLean M.Acta Mater, 2003; 51: 2971
[19] Li Q, Li D Z, Qian B N.Acta Phys Sin, 2004; 53: 3477
[19] (李强, 李殿中, 钱百年. 物理学报, 2004; 53: 3477)
[20] Li Q, Li D Z, Qian B N.Acta Metall Sin, 2004; 40: 634
[20] (李强, 李殿中, 钱百年. 金属学报, 2004; 40: 634)
[21] Li Q, Li D Z, Qian B N.Acta Metall Sin, 2004; 40: 1215
[21] (李强, 李殿中, 钱百年. 金属学报, 2004; 40: 1215)
[22] Beltran-Sanchez L, Stefanescu D M.Metall Mater Trans, 2004; 35A: 2471
[23] Zhu M F, Chen J, Sun G X, Hong C P.Acta Metall Sin, 2005; 41: 583
[23] (朱鸣芳, 陈晋, 孙国雄, 洪俊杓. 金属学报, 2005; 41: 583)
[24] Yu J, Xu Q Y, Cui K, Liu B C.Acta Metall Sin, 2007; 43: 731
[24] (于靖, 许庆彦, 崔锴, 柳百成. 金属学报, 2007; 43: 731)
[25] Yin H, Felicelli S D.Acta Mater, 2010; 58: 1455
[26] Chen R, Xu Q Y, Liu B C.J Mater Sci Technol, 2014; 30: 1311
[27] Thevoz P, Desbioles J L, Rappaz M.Metall. Trans, 1989; 20A: 311
[28] Shan B W, Lin X, Wei L, Huang W D.Acta Phys Sin, 2009; 58: 1132
[28] (单博炜, 林鑫, 魏雷, 黄卫东. 物理学报, 2009; 58: 1132)
[29] Zhu M F, Stefanescu D M.Acta Mater, 2007; 55: 1741
[30] Wei L, Lin X, Wang M, Huang W D.Appl Phys, 2011; 103A: 123
[31] Trivedi R, Kurz W.Int Mater Rev, 1994; 39: 49
[32] Wei L, Lin X, Wang M, Huang W D.Acta Phys Sin, 2012; 61: 098104
[32] (魏雷, 林鑫, 王猛, 黄卫东. 物理学报, 2012; 61: 098104)
[33] Pan S Y.PhD Dissertation, Southeast University, Nanjing, 2013
[33] (潘诗琰. 东南大学博士学位论文, 南京, 2013)
[34] Dong H B, Lee P D.Acta Metall, 2005; 53: 659
[35] Guo Y G, Li S M, Liu L, Fu H Z.Acta Metall Sin, 2008; 44: 365
[35] (郭勇冠, 李双明, 刘林, 傅恒志. 金属学报, 2008; 44: 365)
[36] Shan B W, Huang W D, Lin X, Wei L.Acta Metall Sin, 2008; 44: 1042
[36] (单博炜, 黄卫东, 林鑫, 魏雷. 金属学报, 2008; 44: 1042)
[37] Zhang Y P, Lin X, Wei L, Wang M, Peng D J, Huang W D.Acta Phys Sin, 2012; 61: 228106
[37] (张云鹏, 林鑫, 魏雷, 王猛, 彭东剑, 黄卫东. 物理学报, 2012; 61: 228106)
[38] Shi Y F, Xu Q Y, Gong M, Liu B C.Acta Metall Sin, 2011; 47: 620
[38] (石玉峰, 许庆彦, 龚铭, 柳百成. 金属学报, 2011; 47: 620)
[39] Zhang H, Xu Q Y, Shi Z X, Liu B C.Acta Metall Sin, 2014; 50: 345
[39] (张航, 许庆彦, 史振学, 柳百成. 金属学报, 2014; 50: 345)
[40] Chen R, Xu Q Y, Liu B C.Acta Phys Sin, 2014; 63: 188102
[40] (陈瑞, 许庆彦, 柳百成. 物理学报, 2014; 63: 188102)
[41] Zhang Y P, Lin X, Wei L, Peng D J, Wang M, Huang W D.Acta Phys Sin, 2013; 62: 178105
[41] (张云鹏, 林鑫, 魏雷, 彭东剑, 王猛, 黄卫东. 物理学报, 2013; 62: 178105)
[42] Wei L, Lin X, Wang M, Huang W D.Chin Phys, 2015; 24B: 078108
[43] Pan S Y, Zhu M F.Acta Metall, 2010; 58: 340
[44] Jiang H X, Zhao J Z.Acta Metall Sin, 2011; 47: 1099
[44] (江鸿翔, 赵九洲. 金属学报, 2011; 47: 1099)
[45] Wei L, Lin X, Wang M, Huang W D.Physica, 2012; 407B: 2471
[46] Shi Y F, Xu Q Y, Liu B C.Trans Nonferrous Met Soc China, 2012; 22: 2756
[47] Fu Z N, Xu Q Y, Xiong S M.Chin J Nonferrous Met, 2007; 17: 1567
[47] (付振南, 许庆彦, 熊守美. 中国有色金属学报, 2007; 17: 1567)
[48] Huo L, Han Z Q, Liu B C.Acta Metall Sin, 2009; 45: 1414
[48] (霍亮, 韩志强, 柳百成. 金属学报, 2009; 45: 1414)
[49] Wu M W, Xiong S M.Acta Metall Sin, 2010; 46: 1534
[49] (吴孟武, 熊守美. 金属学报, 2010; 46: 1534)
[50] Wu M W, Xiong S M.Acta Metall Sin, 2012; 25: 169
[50] (吴孟武, 熊守美. 金属学报, 2012; 25: 169)
[51] Trivedi R, Miyahara H, Mazumder P, Simsek E, Tewari S N.J Cryst Growth, 2001; 222: 365
[52] Zhu M F, Lee S Y, Hong C P.Phys Rev, 2004; 69E: 061610
[53] Zhu M F, Dai T, Lee S Y, Hong C P.Sci China, 2005; 48E: 241
[54] Zhu M F, Dai T, Lee S Y, Hong C P.Comput Math Appl, 2008; 55: 1620
[55] Yuan L, Lee P D.Model Simul Mater Sci Eng, 2010; 18: 055008
[56] Dong Z B, Wang S J, Ma R, Wei Y H, Song K J, Zhai G F.J Mater Sci Technol, 2011; 27: 183
[57] Shi Y F, Xu Q Y, Liu B C.Acta Phys Sin, 2011; 60: 126101
[57] (石玉峰, 许庆彦, 柳百成. 物理学报, 2011; 60: 126101)
[58] Wang W L, Luo S, Zhu M Y.Comp Mater Sci, 2014; 95: 136
[59] Zhang X F, Zhao J Z.Acta Metall Sin, 2012; 48: 615
[59] (张显飞, 赵九洲. 金属学报, 2012; 48: 615)
[60] Karagadde S, Yuan L, Shevchenko N, Eckert D S, Lee P D.Acta Mater, 2014; 79: 168
[61] Yang M H, Guo Z P, Xiong S M.Chin J Nonferrous Met, 2015; 25: 835
[61] (杨满红, 郭志鹏, 熊守美. 中国有色金属学报, 2015; 25: 835)
[62] Qian Y H, D'Humieres D, Lallemand P.Europhys Lett, 1992; 17: 479
[63] Sun D K, Zhu M F, Pan S Y, Raabe D.Acta Mater, 2009; 57: 1755
[64] Sun D K, Zhu M F, Pan S Y, Yang C R, Raabe D.Comput Math Appl, 2011; 61: 3585
[65] Yang Z R, Sun D K, Pan S Y, Dai T, Zhu M F.Acta Metall Sin, 2009; 45: 43
[65] (杨朝蓉, 孙东科, 潘诗琰, 戴挺, 朱鸣芳. 金属学报, 2009; 45: 43)
[66] Zhu M F, Sun D K, Pan S Y, Zhang Q Y, Raabe D.Modell Simul Mater Sci Eng, 2014; 22: 034006
[67] Yin H, Felicelli S D, Wang L.Acta Mater, 2011; 59: 3124
[68] Sun D K, Zhu M F, Dai T, Cao W S, Chen S L, Raabe D, Hong C P.Int J Cast Met Res, 2011; 24: 177
[69] Sun D K, Zhang Q Y, Cao W S, Zhu M F.Chin Phys Lett, 2015; 32: 068103
[70] Sun D K.PhD Dissertation, Southeast University, Nanjing, 2010
[70] (孙东科. 东南大学博士学位论文, 南京, 2010)
[71] Jarvis D J, Brown S G R.Mater Sci Technol, 2000; 16: 1420
[72] Zhu M F, Hong C P.Phys Rev, 2002; 66B: 155428
[73] Zhu M F, Hong C P.Metall Mater Trans, 2004; 35A: 1555
[74] Chen R, Xu Q Y, Liu B C.China Foundry, 2016; 13: 114
[75] Wu M W, Xiong S M.Acta Phys Sin, 2011; 60: 058103
[75] (吴孟武, 熊守美. 物理学报, 2011; 60: 058103)
[76] Himemiya T.Mater Trans, 2012; 53: 1652
[77] Shi Y F, Xu Q Y, Liu B C.Acta Metall Sin, 2012; 48: 41
[77] (石玉峰, 徐庆彦, 柳百成. 金属学报, 2012; 48: 41)
[78] Charbon C, Rappaz M.In: Lesoult G, Lacaze J eds., Proc 5th Int Conf on Physical Metallurgy of Cast Iron, Switzerland: Scitec Publications, 1997: 453
[79] Ruxanda R, Beltran-Sanchez L, Massone J, Stefanescu D M.AFS Trans, 2001; 109: 1037
[80] Gurgul D, Burbelko A.Arch Metall Mater, 2010; 55: 53
[81] Burbelko A, Fras E, Gurgul D, Kapturkiewicz W, Sikora J.Key Eng Mater, 2011; 457: 330
[82] Burbelko A A, Gurgul D, Kapturkiewic W, Górny M.Mater Sci Eng, 2012; 33: 012083
[83] Zhao H L, Zhu M F, Stefanescu D M.Key Eng Mater, 2011; 457: 324
[84] Zhang L, Zhao H L, Zhu M F.Acta Metall Sin, 2015; 51: 48
[84] (张蕾, 赵红蕾, 朱鸣芳. 金属学报, 2015; 51: 48)
[85] Zhu M F, Zhang L, Zhao H L, Stefanescu D M.Acta Mater, 2015; 84: 413
[86] Zhu M F, Cao W, Chen S L, Hong C P, Chang Y A.J Phase Equilib Diffus, 2007; 28: 130
[87] Dai T, Zhu M F, Chen S L, Cao W S, Hong C P.Acta Metall Sin, 2008; 10: 1175
[87] (戴挺, 朱鸣芳, 陈双林, 曹伟生, 洪俊杓. 金属学报, 2008; 10: 1175)
[88] Shi Y F, Xu Q Y, Liu B C.Acta Phys Sin, 2012; 61: 108101
[88] (石玉峰, 许庆彦, 柳百成. 物理学报, 2012; 61: 108101)
[89] Zhang X F, Zhao J Z, Jiang H X, Zhu M F.Acta Mater, 2012; 60: 2249
[90] Zhang X F, Zhao J Z.J Cryst Growth, 2014; 391: 52
[91] Chen R, Xu Q Y, Wu Q F, Guo H T, Liu B C.Acta Metall Sin, 2015; 51: 733
[91] (陈瑞, 许庆彦, 吴勤芳, 郭会廷, 柳百成. 金属学报, 2015; 51: 733)
[92] Chen R, Xu Q Y, Liu B C.Acta Metall Sin, 2015; 28: 173
[92] (陈瑞, 许庆彦, 柳百成. 金属学报, 2015; 28: 173)
[93] Zhao Y, Qin R S, Chen D F.J Cryst Growth, 2013; 377: 72
[94] Wang T T.Master Thesis, Southeast University, Nanjing, 2016
[94] (王韬涛. 东南大学硕士学位论文, 南京, 2016)
[95] Atwood R C, Lee P D.Acta Mater, 2003; 51: 5447
[96] Lee P D, Chirazi A, Atwood R C, Wang W.Mater Sci Eng, 2004; A365: 57
[97] Dong S Y, Xiong S M, Liu B C.J Mater Sci Technol, 2004; 20: 23
[98] Hang Z Q, Li J X, Yang W, Zhao H D, Liu B C.Acta Metall Sin, 2011; 47: 7
[98] (韩志强, 李金玺, 杨文, 赵海东, 柳百成. 金属学报, 2011; 47: 7)
[99] Sasikumar R, Walker M J, Savithri S, Sundarraj S.Modell Simul Mater Sci Eng, 2008; 16: 035009
[100] Li Z Y, Zhu M F, Dai T.Acta Metall Sin, 2013; 49: 1032
[100] (李正扬, 朱鸣芳, 戴挺. 金属学报, 2013; 49: 1032)
[101] Zhu M F, Li Z Y, An D, Zhang Q Y, Dai T.ISIJ Int, 2014; 54: 384
[102] Wang T T, An D, Zhang Q Y, Dai T, Zhu M F.IOP Conf Ser Mater Sci Eng, 2015; 84: 012046
[103] Wu W, Sun D K, Dai T, Zhu M F.Acta Phys Sin, 2012; 61: 150501
[103] (吴伟, 孙东科, 戴挺, 朱鸣芳. 物理学报, 2012; 61: 150501)
[104] Wu W, Zhu M F, Sun D K, Dai T, Han Q Y, Raabe D.IOP Conf Ser Mater Sci Eng, 2012; 33: 012103
[105] Chen H N, Sun D K, Dai T, Zhu M F.Acta Phys Sin, 2013; 63: 150502
[105] (陈海楠, 孙东科, 戴挺, 朱鸣芳. 物理学报, 2013; 63: 150502)
[106] Sun D K, Zhu M F, Wang J, Baode S.Int J Heat Mass Trans, 2016; 94: 474
[107] Liu D R, Mangelinck-No?l N, Gandin C A, Zimmermann L G, Sturz L, Nguyen-Thi H, Billia B.Acta Mater, 2015; 93: 24
[108] Li D Z, Du Q, Hu Z Y, Li Y Y.Acta Metall Sin, 1999; 35: 1201
[108] (李殿中, 杜强, 胡志勇, 李依依. 金属学报, 1999; 35: 1201)
[109] Kang X H, Du Q, Li D Z, Li Y Y.Acta Metall Sin, 2004; 40: 452
[109] (康秀红, 杜强, 李殿中, 李依依. 金属学报, 2004; 40: 452)
[110] Xu Q Y, Liu B C.Mater Trans, 2001; 42: 2316
[111] Feng W M, Xu Q Y, Liu B C.ISIJ Int, 2002; 42: 702
[112] Liu B C, Xu Q Y, Jing T, Shen H F, Han Z Q.JOM, 2011; 63(4): 19
[113] Meng X B, Li J G, Jin T, Sun X F, Sun C B, Hu Z Q.J Mater Sci Technol, 2011; 27: 118
[114] Pan D, Xu Q Y, Yu J, Liu B C, Li J R, Yuan H L, Jin H P.Int J Cast Metal Res, 2008; 21: 308
[115] Pan D, Xu Q Y, Liu B C, Yuan H L, Jin H P.JOM, 2010; 62(5): 30
[116] Pan D, Xu Q Y, Liu B C.Sci China, 2011; 54G: 851
[117] Zhang H, Xu Q Y, Tang N, Pan D, Liu B C.Sci China, 2011; 54E: 3191
[118] Yan X W, Tang N, Liu X F, Shui G Y, Xu Q Y, Liu B C.Acta Metall Sin, 2015; 10: 1288
[118] (闫学伟, 唐宁, 刘孝福, 税国彦, 许庆彦, 柳百成. 金属学报, 2015; 10: 1288)
[119] Li B K, Wang F, Zhang H, Chen M Q.J Iron Steel Res Int, 2011; 52: 159
[120] Li B K, Wang Q, Wang F, Chen M Q.JOM, 2014; 66(7): 1153
[121] Han R H, Dong W C, Lu S P, Li D Z, Li Y Y.Acta Phys Sin, 2014; 63: 228103
[121] (韩日宏, 董文超, 陆善平, 李殿中, 李依依. 物理学报, 2014; 63: 228103)
[122] Wei L, Lin X, Wang M, Huang W D.Acta Phys Sin, 2015; 64: 018103
[122] (魏雷, 林鑫, 王猛, 黄卫东. 物理学报, 2015; 64: 018103)
[123] Luo S, Zhu M Y, Louhenkilpi S.ISIJ Int, 2012; 52: 823
[124] Sun T, Yue F, Wu H J, Guo C, Li Y, Ma Z C.J Iron Steel Res Int, 2016; 23: 329
[125] Liu D R, Wu S P, Guo J J, Su Y Q, Fu H Z.Acta Metall Sin, 2006; 42: 437
[125] (刘东戎, 吴士平, 郭景杰, 苏彦庆, 傅恒志. 金属学报, 2006; 42: 437)
[126] Liu D R, Reinhart G, Mangelinck-No?l N, Gandin C A, Nguyen-Thi H, Billia B.ISIJ Int, 2014; 54: 392
[1] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[2] CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1209-1220.
[3] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[5] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[6] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[7] DU Jinhui, BI Zhongnan, QU Jinglong. Recent Development of Triple Melt GH4169 Alloy[J]. 金属学报, 2023, 59(9): 1159-1172.
[8] LI Jiarong, DONG Jianmin, HAN Mei, LIU Shizhong. Effects of Sand Blasting on Surface Integrity and High Cycle Fatigue Properties of DD6 Single Crystal Superalloy[J]. 金属学报, 2023, 59(9): 1201-1208.
[9] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[10] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[11] FENG Qiang, LU Song, LI Wendao, ZHANG Xiaorui, LI Longfei, ZOU Min, ZHUANG Xiaoli. Recent Progress in Alloy Design and Creep Mechanism of γ'-Strengthened Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1125-1143.
[12] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[13] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[14] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[15] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
No Suggested Reading articles found!