Please wait a minute...
Acta Metall Sin  2005, Vol. 41 Issue (3): 255-259     DOI:
Research Articles Current Issue | Archive | Adv Search |
Effects of drawing strain on formation of filamentary structure and conductivity for Cu-12%Ag alloy
ZHANG Lei; MENG Liang
College of Materials Science and Chemical Engineering; Zhejiang University; Hangzhou 310027
Cite this article: 

ZHANG Lei; MENG Liang. Effects of drawing strain on formation of filamentary structure and conductivity for Cu-12%Ag alloy. Acta Metall Sin, 2005, 41(3): 255-259 .

Download:  PDF(362KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Cu-12%Ag (mass fraction) filamentary composite was prepared by heavy cold drawing. The evolution of filamentary microstructure and the effect of strain level on the electrical conductivity of the composite were investigated. The mechanism responsible for the electrical conductive behavior was discussed. With increasing draw ratio, the original eutectic colonies develop into fine fibrous bundles and the electrical conductivity decreases. Electrical conduction of the composite depends mainly on the Cu matrix instead of eutectic fibrous bundles. The conductive loss with strain enhancement can mainly be attributed to the reduction of interfacial spacing between the Cu matrix and eutectic fibrous bundle. The quantitative relationship between the electrical resistivity and draw ratio was derived on the basis of a size-effect model and can be utilized to predict the electrical conductive level of the composite under different strain conditions.
Key words:  Cu-Ag alloy      filamentary microstructure      electrical conductivity      
Received:  19 May 2004     
ZTFLH:  TB331  
  TG146.3  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2005/V41/I3/255

[1] Grunberger W, Heilmaier M, Schultz L.Physica, 2001; 294-295B: 643
[2] Maeda H, Inoue K, Kiyoshi T, Asano T, Sakai Y, Takeuchi T. Physica, 1996; 216B: 141
[3] Wood J T, Embury J D, Ashby M. Acta Mater, 1997; 45: 1099
[4] Sakai Y, Inoue K, Asano T, Wada H, Maeda H. Appl Phys Lett, 1991; 59: 2965
[5] Benghalem A, Morris D G. Acta Mater, 1997; 45: 397
[6] Sakai Y, Schneider-Muntau H J. Acta Mater, 1997; 45: 1017
[7] Ohsaki S, Yamazaki K, Hono K. Scr Mater, 2003; 48: 1569
[8] Zhang L, Meng L. Mater Sci Technol, 2003; 19: 75
[9] Zhang L, Meng L. Chin J Nonferrous Met, 2002; 12: 1218 (张雷,孟亮.中国有色金属学报,2002;12:1218)
[10] Yan F, Meng L, Zhang L. Acta Metall Sin, 2004; 40: 891 (颜芳,孟亮,张雷.金属学报,2004;40:891)
[11] Hong S I, Hill M A. Mater Sci Eng, 1999; A264: 151
[12] Mattissen D, Raabe D, Heringhaus F. Acta Mater, 1999; 47: 1627
[13] Frommeyer G, Wassermann G. Acta Metall, 1975; 23: 1353
[14] Verhoeven J D, Chumbley L S, Laabs F C, Spitzig W A. Acta Metall Mater, 1991; 39: 2825
[15] Frommeyer G, Wassermann G. Phys Status Solidi, 1975; 27A: 99
[16] Dingle R B. Proc Soc London, 1950; 201A: 545
[17] Sondheimer E H. Adv Phys, 1952; 1: 1
[1] LI Dou, XU Changjiang, LI Xuguang, LI Shuangming, ZHONG Hong. Thermoelectric Properties of P-Type CeyFe3CoSb12 Thermoelectric Materials and Coatings Doped with La[J]. 金属学报, 2023, 59(2): 237-247.
[2] HOU Jiapeng, SUN Pengfei, WANG Qiang, ZHANG Zhenjun, ZHANG Zhefeng. Breaking the Trade-Off Relation Between Strength and Electrical Conductivity: Heterogeneous Grain Design[J]. 金属学报, 2022, 58(11): 1467-1477.
[3] CUI Yang, LI Shouhang, YING Tao, BAO Hua, ZENG Xiaoqin. Research on the Thermal Conductivity of Metals Based on First Principles[J]. 金属学报, 2021, 57(3): 375-384.
[4] LI Dongmei, JIANG Beibei, LI Xiaona, WANG Qing, DONG Chuang. Composition Rule of High Hardness and Electrical Conductivity Cu-Ni-Si Alloys[J]. 金属学报, 2019, 55(10): 1291-1301.
[5] Caihong DONG, Yongli LIU, Yang QI. Effect of Thickness on the Surface and Electronic Properties of Bi Film[J]. 金属学报, 2018, 54(6): 935-942.
[6] Xiaowei ZUO,Rui GUO,Bailing AN,Lin ZHANG,Engang WANG. MICROSTRUCTURE, HARDNESS AND ELECTRICAL RESISTIVITY OF DIRECTIONALLY SOLIDIFIEDCu-6%Ag ALLOY UNDER A TRANSVERSE MAGNETIC FIELD[J]. 金属学报, 2016, 52(2): 143-150.
[7] XIANG Hongliang, GUO Peipei, LIU Dong. MICROSTRUCTURE AND ANTIBACTERIAL PROPERTIES OF Ag-BEARING DUPLEX STAINLESS STEEL[J]. 金属学报, 2014, 50(10): 1210-1216.
[8] LI Junming XUE Xiaonan CAI Hui JIANG Bailing. PREPARATION AND CHARACTERIZATION OF ELECTROLESS Ni COATING ON THE SURFACE OF MgO WITH POROUS STRUCTURE[J]. 金属学报, 2010, 46(9): 1103-1108.
[9] LI Guimao WANG Engang ZHANG Lin ZUO Xiaowei HE Jicheng. EFFECTS OF HIGH MAGNETIC FIELD ON THE PRECIPITATE AND PROPERTY OF Cu-25%Ag ALLOY[J]. 金属学报, 2010, 46(9): 1128-1132.
[10] LIU Aiping ZHU Jiaqi TANG Weihua LI Chaorong. ELECTRICAL PROPERTIES OF PHOSPHORUS INCORPORATED TETRAHEDRAL AMORPHOUS CARBON FILMS[J]. 金属学报, 2010, 46(2): 201-205.
[11] QU Wensheng; ZHANG Gong; LOU Langhong; DONG Jiasheng; YANG Ke. EFFECTS OF NiSO4 AND NaCl CONTENTS ON THROWING POWER OF SOLUTION ELECTROPLATING Ni AND Ni DEPOSIT[J]. 金属学报, 2008, 44(3): 341-345 .
[12] Liang Meng. EFFECTS OF ANNEALING TEMPERATURE ON INTENSITY AND DISTRIBUTION OF CRYSTAL TEXTURE IN Cu-12% Ag FILAMENTARY COMPOSITE[J]. 金属学报, 2008, 44(1): 43-48 .
[13] Liang Meng. STEPPED INTERFACE AND CRYSTAL ORIENTATION IN THE EUTECTIC STRUCTURE OF Cu-71.8 wt.% Ag ALLOY[J]. 金属学报, 2007, 43(8): 803-806 .
[14] . [J]. 金属学报, 2007, 43(6): 643-647 .
[15] LIU Jiabin; Liang Meng. STRAIN COMPATIBILITY BEHAVIOR IN Cu-6%Ag ALLOY DURING DRAWING INTO FILAMENTARY STRUCTURE[J]. 金属学报, 2006, 42(9): 931-936 .
No Suggested Reading articles found!