Please wait a minute...
Acta Metall Sin  2004, Vol. 40 Issue (6): 569-    DOI:
Research Articles Current Issue | Archive | Adv Search |
A Simulating Approach to Elemental Concentration of Sublattices and Lattice Parameter of r', Phase in Ni Base Superalloys
PENG Zhifang;LIU Pan
College of Power and Mechanical Engineering; Wuhan University; Wuhan 430072
Cite this article: 

PENG Zhifang; LIU Pan. A Simulating Approach to Elemental Concentration of Sublattices and Lattice Parameter of r', Phase in Ni Base Superalloys. Acta Metall Sin, 2004, 40(6): 569-.

Download:  PDF(17304KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Objective functions on minimizing the atomic volume elastic strain and the atomic size misfit in close--packed directions due to the atomic substitution in sublattices of r’ phase are established, respectively. Constrain conditions on equilibrium partition of alloying elements and on their concentration range in sublattices of r’ phase are correspondingly built up. Using superalloys CMSX--2 and SRR99 as objects investigated and adopting a compound optimization calculation method with the Powell and the Simplex algorithms, the elemental concentration and the site fraction of the two sublattices can be calculated. In addition, a calculation formula on lattice parameter of r’phase closely associated with the elemental concentration and with the site occupancy of the sublattices is derived. All the calculated results by use of the present methods show quite good accordance with the reported values. The method proposed can predict the elemental concentration in sublattices and the lattice parameter of r’phase when the chemical composition of the r’ phase investigated is known.
Key words:  Ni base alloy      optimizing calculation           
Received:  02 July 2003     
ZTFLH:  TG113  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2004/V40/I6/569

[1] Volkl R, Glatzel U, Feller-Kniepmeier M. Acta Mater,1998; 46(12) : 4395
[2] Watanabe R, Kuno T. Tetsu-to-Hagane, 1975; 61: 2274(渡边力藏, 九重常男. 铁钢,1975; 61: 2274)
[3] Bhadeshia H K D H, Sree Harsha Lalam, University of Cambridge, http://www.msm.cam.ac.uk/map/nickel/programs/lattice.htm, Feb, 2000
[4] Yoshitake S, Narayan V, Harada H, Bhadeshia H K D H,Mackay D J C. ISIJ Int, 1998; 38(5) : 495
[5] Enomoto M, Harada H, Yamazaki M. CALPHAD, 1991;15(2) : 143
[6] Ikeda Y. Mater Trans JIM, 1997; 38(9) : 761
[7] Harada H, Ohno K, Yamagata T, Yokokawa T, Yamazaki M. In: Reichmann S, Duhl D N, Maurer G, Antolovic S,Lunds C eds, Superalloys 1988, Warrendale, PA: TMSAIME 1988; 733
[8] Peng Z F, Ren Y Y, Zhang W, Yan P, Zhao J C, Wang Y Q. Acta Metall Sin, 2001; 37(4) : 345(彭志方, 任遥遥, 张伟, 燕平, 赵京晨, 王延庆. 金属学报, 2001; 37(4) : 345)
[9] Peng Z F, Ren Y Y. Metall Mater Trans, 2002; 33A: 3065
[10] Blavette D, Bostel A. Acta Metall, 1984; 32 (5) : 811
[11] Schmidt R, Feller-Kniepmeier M. Metall Trans, 1992;23A: 745
[12] Caron P, Khan T. Mater Sci Eng, 1983; 61: 173
[1] ZHANG Zixuan, YU Jinjiang, LIU Jinlai. Anisotropy of Stress Rupture Property of Ni Base Single Crystal Superalloy DD432[J]. 金属学报, 2023, 59(12): 1559-1567.
[2] ZHANG Limin, LI Ning, ZHU Longfei, YIN Pengfei, WANG Jianyuan, WU Hongjing. Macrosegregation Mechanism of Primary Silicon Phase in Cast Hypereutectic Al-Si Alloys Under Alternating Electropulsing[J]. 金属学报, 2023, 59(12): 1624-1632.
[3] . The Mechanism and Damage Model for the Dynamic Tensile Fracture of Liquid Aluminum with He Bubble[J]. 金属学报, 0, (): 0-0.
[4] . Nanoscratching Mechanical Performance of the TiZrHfCuBe High-Entropy Metallic Glass[J]. 金属学报, 0, (): 0-0.
[5] LI Sai, YANG Zenan, ZHANG Chi, YANG Zhigang. Phase Field Study of the Diffusional Paths in Pearlite-Austenite Transformation[J]. 金属学报, 2023, 59(10): 1376-1388.
[6] DU Jinhui, BI Zhongnan, QU Jinglong. Recent Development of Triple Melt GH4169 Alloy[J]. 金属学报, 2023, 59(9): 1159-1172.
[7] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
[8] .  {111}/{111} Near Singular Boundaries in a Dynamically Recrystallized Al-Zn-Mg-Cu Alloy Compressed at Elevated Temperature[J]. 金属学报, 0, (): 0-0.
[9] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[10] LI Dianzhong, WANG Pei. Tailoring Microstructures of Metals[J]. 金属学报, 2023, 59(4): 447-456.
[11] . Enhancing Tribological Properties in a Refractory High-entropy Alloy via Forming Eutectic Structure[J]. 金属学报, 0, (): 0-0.
[12] . Interfacial Compatibility Study for Laser Melting Deposition of CoCrNiCu Medium Entropy Alloy on 316L Austenitic Stainless Steel Surface[J]. 金属学报, 0, (): 0-0.
[13] ZHANG Jinyu, QU Qimeng, WANG Yaqiang, WU Kai, LIU Gang, SUN Jun. Research Progress on Irradiation Effects and Mechanical Properties of Metal/High-Entropy Alloy Nanostructured Multilayers[J]. 金属学报, 2022, 58(11): 1371-1384.
[14] ZHAO Yonghao, MAO Qingzhong. Toughening of Nanostructured Metals[J]. 金属学报, 2022, 58(11): 1385-1398.
[15] LI Xiaolin, LIU Linxi, LI Yating, YANG Jiawei, DENG Xiangtao, WANG Haifeng. Mechanical Properties and Creep Behavior of MX-Type Precipitates Strengthened Heat Resistant Martensite Steel[J]. 金属学报, 2022, 58(9): 1199-1207.
No Suggested Reading articles found!