|
|
Delayed Fracture Behavior Of Ultrafine Grained High Strength Steel |
HUI Weijun; DONG Han; WENG Yuqing; SHI Jie; NIE Yihong;CHU Zuoming; CHEN Yunbo |
Institute of Structural Materials; Central Iron & Steel Research Institute; Beijing 100081 |
|
Cite this article:
HUI Weijun; DONG Han; WENG Yuqing; SHI Jie; NIE Yihong; CHU Zuoming; CHEN Yunbo. Delayed Fracture Behavior Of Ultrafine Grained High Strength Steel. Acta Metall Sin, 2004, 40(6): 561-.
|
Abstract 42CrMoVNb steel with ultrafine prior austenite grain, its size as fine as 2 m, was obtained through rapidly cycle heat treatment. The effect of ultrafine grain size on delayed fracture behavior is studied using sustained load tensile test with notched specimen. It is shown that both strength and delayed fracture resistance of 42CrMoVNb steel increase when its grain size is refined from 20 m to 4 m, but they do not increase when refined to 2 m. When the steel was
tempered at high temperature, its fracture characteristic at crack initiation area changes from intergranular to transgranular when its grain size is refined from 20 m to 8---4 m, while the fracture characteristic is intergranular when its grain size is refined to 2 m. Its fracture characteristics are all intergranular fracture for all the grain sizes investigated when tempered at low temperature. The reason for this kind of delayed fracture behavior is discussed mainly from the stress concentration and segregation at grain boundary.
|
Received: 10 July 2003
|
|
[1] Banerji S K, McMahon Jr C J, Feng H C. Metall Trans A, 1978; 9A(2) : 237 [2] Bandyopadhyay N, Kameda J, McMahon Jr C J. Metall Trans A, 1983; 14A(5) : 881 [3] Proctor R P M, Paxton H W. Trans Am Soc Met, 1969;62(4) : 989 [4] McDarmaid D S. Met Technol, 1978; 5(1) : 7 [5] Lessar J F, Gerberich W W. Metall Trans A, 1976; 7A:953 [6] Padmanabhan R, Wood W E. Metall Trans A, 1983;14A(11) : 2347 [7] Lin D L, Lan Y, Wu J S. Metall Trans A, 1988; 19A(9) :2225 [8] Li G F, Wu R G, Lei T C. Metall Trans A, 1990; 21A(2) :503 [9] Kawasaki K, Chiba T, Koga H, Yamazaki T. Tetsu-to-Hagane, 1987; 73(16) : 2298(川奇一博, 千叶贵世, 古贺久喜, 山崎隆雄.铁钢, 1987;73(16) : 2298) [10] Webster D. Trans ASM,1969; 62: 759 [11] Weng Y Q. Ultra Steel 2000, Proc Inter Workshop on the Innovative Structural Materials for Infrastructure in 21st Century. Japan, Tsukuba: NIMS, 2000: 11 [12] Chu W Y. Hydrogen Damage and Delayed Failure. Bei-(褚武扬.氢损伤和滞后断裂.北京: 冶金工业出版社, 1988:474) [13] Matsuyama S. Delayed Fracture. Tokyo: Nikkan-Kogyo Press, 1989: 67(松山晋作. 破坏. 北京: 日刊工业新闻社, 1989: 67) [14] Yamsaki S, Takahashi T. Testu-to-Hagane, 1997; 83(7) :460(山崎真吾, 高桥 棯彦. 铁钢, 1997;83(7) : 460) [15] Chu W Y, Qiao L J, Chen Q Z, Gao K W. Fracture and Environmental Fracture. Beijing: Science Press, 2000:149(褚武扬, 乔利杰, 陈奇志, 高克玮.断裂与环境断裂. 北京:科学出版社, 2000: 149) [16] Umemoto M, Tamura I. J Heat Treat, 1984; 24(6) : 334(梅本, 田村今男. 热处理, 1984; 24(6) : 334) [17] The Commercial and Industrial Ministry of Japan. Iron & Steel World, 1996; (12) : 18(通商产业省基础产业局制铁课. 铁钢界, 1996; (12) : 18) [18] Banerji S K, McMahon Jr. C J, Feng H C. Metall Trans A, 1978; 9A(2) : 237 [19] Tien J K. In: Thompson A W, Bernstein I M eds, Met Soc AIMK,1976: 309 [20] Hui W J. PhD Thesis, Beijing: Central Iron & Steel Research Institute, 2003(惠卫军.钢铁研究总院博士学位论文, 北京, 2003) [21] Li G F, Wu R G, Lei T C. Metall Trans A, 1992; 23A(10) :2879 [22] Pressouyre G M. Metall Trans A, 1979; 10A(10) : 1571 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|