Please wait a minute...
Acta Metall Sin  2025, Vol. 61 Issue (7): 1011-1023    DOI: 10.11900/0412.1961.2023.00154
Research paper Current Issue | Archive | Adv Search |
Differential Microstructure Between fcc and bcc Steel Plates Under Hyper-Velocity Impact
SUN Huanteng, MA Yunzhu, CAI Qingshan(), WANG Jianning, DUAN Youteng, ZHANG Mengxiang
Powder Metallurgy Research Institute, Central South University, Changsha 410083, China
Cite this article: 

SUN Huanteng, MA Yunzhu, CAI Qingshan, WANG Jianning, DUAN Youteng, ZHANG Mengxiang. Differential Microstructure Between fcc and bcc Steel Plates Under Hyper-Velocity Impact. Acta Metall Sin, 2025, 61(7): 1011-1023.

Download:  HTML  PDF(7547KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The study of the dynamic behavior of materials under impact conditions is crucial in aerospace and defense industries. These materials are subjected to high speed and hyper-velocity impacts, high temperature, high pressure, and considerable deformation. Notably, many crystal-structured steel plates exhibit similar variability when subjected to impact conditions. A current and cutting-edge topic in contemporary research is the exploration of the microstructure properties of steel plates with various crystal structures under impact. This study aims to investigate the microstructural change of various crystalline structural steel materials under impact loads with high velocities. Two typical crystalline structural steels, 304 and Q345 stainless steels, were tested in impact tests using a two-stage light-gas pistol. The microstructure features of the steel plates under impact were characterized and examined using characterization techniques like XRD, EBSD, and TEM. Under impact conditions, the 304 stainless steel plate did not show any significant flanging phenomena at the macro level. However, there is a minor degree of ε-martensite transition and micro α'-martensite transformation that occurs on 304 stainless steel plates. Austenite and martensite have a similar K-S orientation relationship. Under the impact condition, the Q345 steel plate displays macro-level flipping properties but no overt micro-level phase transition. However, the diffraction peak on the {110} crystal plane substantially increases, the space between crystal planes narrows, and the {200} crystal plane shows a considerable diffraction peak shift to the right, creating the grains' preferred orientation. The Q345 steel plate exhibits considerable crystal structure delamination under impact, whereas 304 stainless steel did not display significant crystal structure elongation. The two types of steel plates have various macroscopic fracture modes owing to their differing crystal structures. Specifically, the Q345 steel demonstrates plastic fracture properties, whereas 304 stainless steel displays almost brittle fracture characteristics. The twin grain boundary of austenite is where martensite forms based on the calibration of electron diffraction spots.

Key words:  ultra-high strain rate      microstructure characteristics      impact-induced martensitic phase transformation      dynamic mechanical behavior      crystal structure     
Received:  06 April 2023     
ZTFLH:  TG111  
Fund: National Natural Science Foundation of China(51931012);Natural Science Foundation of Hunan Province(S2023JJJCQN0396)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2023.00154     OR     https://www.ams.org.cn/EN/Y2025/V61/I7/1011

Fig.1  Macrostructures and sampling locations (dashed boxes) (a1, b1), electron back scattered diffraction (EBSD) test locations (a2, b2) for 304 stainless steel plate (a1, a2) and Q345 steel plate (b1, b2) (ID—impact direction, ND—normal direction, TD—transverse direction)
Fig.2  XRD spectra for the samples made near the perforation in ID-ND plane and stay away from the perforation in ND-TD plane of 304 stainless steel plates (a) and Q345 steel plates (b) (Inset in Fig.2b shows the locally enlarged spectrum)
Fig.3  Phase transformation EBSD characterizations for the sample near perforation of 304 stainless steel
(a-d) EBSD images at positions 1 (a), 2 (b), 3 (c), and 4 (d) in Fig.1a2 (Yellow areas in Fig.3d indicate martensite tends to nucleate at austenite twin boundary or gain boundary intersection)
(e) phase area fraction distributions
Fig.4  Phase distribution and phase interface diagram for the sample near perforation of 304 stainless steel at position 1 in Fig.1a2 (a); γ-austenite {111} pole figure (b), γ-austenite {110} pole figure (c) in the phase interface region; and α'-martensite {110} pole figure (d), and α'-martensite {111} pole figure (e) in the phase interface region (Inset in Fig.4a shows the locally enlarged image)
Fig.5  Dynamic recovery recrystallization EBSD analyses for the sample near perforation of 304 stainless steel
(a-d) EBSD images at positions 1 (a), 2 (b), 3 (c), and 4 (d) in Fig.1a2
(e) area fraction distributions of recrystallized, recovered, and deformed grains
Fig.6  Dynamic recovery recrystallization EBSD analyses for the sample near perforation of Q345 steel (a-d) EBSD images at positions 1 (a), 2 (b), 3 (c), and 4 (d) in Fig.1b2 (e) area fraction distributions of recrystallized, recovered, and deformed grains
Fig.7  Texture area fractions for the sample near perforation of 304 stainless steel at positons 1-4 in Fig.1a2 (S—{123}<634¯>, RC—{001}<110>, R—{124}<211¯>)
Fig.8  <110>//ID texture (a-d) and <110>//ND texture (e-h) distribution maps of the sample near perforation of 304 stainless steel at positions 1 (a, e), 2 (b, f), 3 (c, g), and 4 (d, h) in Fig.1a2
Fig.9  Area fractions of the sample texture near perforation of Q345 steel at positions 1-4 in Fig.1b2
Fig.10  <110>//ID texture (a-d) and <110>//ND texture (e-h) distribution maps of the sample near perforation of Q345 steel at positions 1 (a, e), 2 (b, f), 3 (c, g), and 4 (d, h) in Fig.1b2
Fig.11  EBSD characterizations for the sample near perforation of Q345 steel at positon 5 in Fig.1b2
(a) inverse pole figure (IPF) along ND
(b) phase distribution map
(c) <110> silk texture parallel to ND
(d) kernel average misorientation (KAM) map
(e) dynamic recrystallization distribution map
(f) relative frequency distribution of local misorientation angle within a certain angle range of 0°-5°
Fig.12  TEM characterizations of 304 stainless steel plate near the perforation
(a) HRTEM image
(b) high magnified image and fast Fourier transform (inset) of region 1 in Fig.12a (d(11¯1¯)—(11¯1¯) interplanar spacing, d(111¯)—(111¯) interplanar spacing)
(c) filtering image of region 1 in Fig.12a (Inset shows the atomic structure image of yellow grid area)
(d) fast Fourier transform spot calibration image of region 1 in Fig.12a
(e) martensitic nucleus and twin in austenite
(f) selected area electron diffraction pattern of region 2 in Fig.12e (Subscripts M and T represent matrix and twin, respectively)
(g) schematic of the d(11¯1¯) measurement
1 Liang H H, Li G. Study on microstructure and properties of heat treatment Q345 steel [J]. Foundry Technol., 2018, 39: 2087
梁慧慧, 李 光. Q345钢热处理组织与性能研究 [J]. 铸造技术, 2018, 39: 2087
2 Lin W, Zhang X W, Zhao Y K, et al. Continuous cooling transformation curve of undercooling austenite about Q345 steel [J]. Mater. Sci. Technol., 2009, 17: 247
林 武, 张希旺, 赵延阔 等. Q345钢奥氏体连续冷却转变曲线(CCT图) [J]. 材料科学与工艺, 2009, 17: 247
3 Zheng S G, Yan J, Gong W W. Hypervelocity impact failure modes of typical spacecraft components [J]. Space Int., 2022, (4): 29
郑世贵, 闫 军, 宫伟伟. 航天器典型部件超高速撞击失效模式 [J]. 国际太空, 2022, (4): 29
4 Chen J, Chen Y J, Yuan B H, et al. Experimental investigation on penetration behavior of reactive fragment against steel plates [J]. Sci. Technol. Eng., 2014, 14(35): 52
陈 进, 陈元建, 袁宝慧 等. 活性破片对钢板侵彻性能的实验研究 [J]. 科学技术与工程, 2014, 14(35): 52
5 Yu T X, Zhu L, Xu J. Progress in structural impact dynamics during 2010-2020 [J]. Explos. Shock Waves, 2021, 41(12): 121401
余同希, 朱 凌, 许 骏. 结构冲击动力学进展(2010-2020) [J]. 爆炸与冲击, 2021, 41(12): 121401
6 Al-Fadhalah K J. Strain-induced martensite formation and recrystallization behavior in 304 stainless steel [J]. J. Mater. Eng. Perform., 2015, 24: 1697
7 Okayasu M, Fukui H, Ohfuji H, et al. Strain-induced martensite formation in austenitic stainless steel [J]. J. Mater. Sci., 2013, 48: 6157
8 Zhang L M, Li Z X, Hu J X, et al. Understanding the roles of deformation-induced martensite of 304 stainless steel in different stages of cavitation erosion [J]. Tribol. Int., 2021, 155: 106752
9 Zerouki M, Ouali M O, Benabou L. Metallurgical phase transformation and behavior of steels under impact loading [J]. Metall. Mater. Trans., 2020, 51A: 252
10 Luo C, Yuan H. Measurement and modeling of deformation-induced martensitic transformation in a metastable austenitic stainless steel under cyclic loadings [J]. Acta Mater., 2022, 238: 118202
11 Wang N, Chen Y N, Zhao Q Y, et al. Effect of strain rate on the strain partitioning behavior of ferrite/bainite in X80 pipeline steel [J]. Acta Metall. Sin., 2023, 59: 1299
doi: 10.11900/0412.1961.2021.00412
王 楠, 陈永楠, 赵秦阳 等. 应变速率对X80管线钢铁素体/贝氏体应变分配行为的影响 [J]. 金属学报, 2023, 59: 1299
12 Shen Y F, Li X X, Xue W Y, et al. Changes in martensite fraction of 304SS in tensile deformation [J] J. Northeast. Univ. (Nat. Sci.), 2012, 33: 1125
申勇峰, 李晓旭, 薛文颖 等. 304不锈钢拉伸变形过程中的马氏体相变 [J]. 东北大学学报(自然科学版), 2012, 33: 1125
13 Xu Y, Song R B, Wang B N, et al. Study on deformation induced α′-martensitic transformation and fracture mechanism of 304HC stainless steel wire [J]. J. Plast. Eng., 2015, 22(4): 154
徐 杨, 宋仁伯, 王宾宁 等. 304HC不锈钢钢丝形变诱导α′-马氏体相变及断裂机制 [J]. 塑性工程学报, 2015, 22(4): 154
14 Yang F, Liang J, Yang R X, et al. Strain-induced martensite and its influence in stamping of 304 stainless steel sheet [J]. J. Mech. Eng., 2021, 57(8): 175
doi: 10.3901/JME.2021.08.175
杨 钒, 梁 君, 杨瑞霞. 304不锈钢板材冲压成形中应变诱发马氏体及其影响 [J]. 机械工程学报, 2021, 57(8): 175
15 Shen Y F, Li X X, Sun X, et al. Twinning and martensite in a 304 austenitic stainless steel [J]. Mater. Sci. Eng., 2012, A552: 514
16 Liu Y, Xu H Z, Wang X F, et al. Progress in dynamic responses and microstructure evolution of the additive manufactured alloys under impact load [J]. Chin. J. High Pressure Phys., 2021, 35(4): 15
刘 洋, 徐怀忠, 汪小锋 等. 冲击载荷下增材制造金属材料的动态响应及微观结构演化研究进展 [J]. 高压物理学报, 2021, 35(4): 15
17 Singh P K, Kumar M. Hypervelocity impact behavior of projectile penetration on spacecraft structure: A review [J]. Mater. Today: Proc., 2022, 62: 3167
18 Ren S Y, Zhang Q M, Wu Q, et al. A debris cloud model for hypervelocity impact of the spherical projectile on reactive material bumper composed of polytetrafluoroethylene and aluminum [J]. Int. J. Impact Eng., 2019, 130: 124
19 Ni C H, Wang F C, Xu Q, et al. Deformation twinning in BCC iron under hypervelocity impact [J]. Trans. Beijing Inst. Technol., 2011, 31: 984
倪川皓, 王富耻, 徐 强 等. 超高速碰撞下体心立方纯铁的变形孪晶 [J]. 北京理工大学学报, 2011, 31: 984
20 Chen G X, Sang B G, Liu H W, et al. Hot deformation characteristics and dynamic recrystallization behavior of H13 steel at high temperature [J]. J. Plast. Eng., 2022, 29(6): 193
陈国鑫, 桑宝光, 刘宏伟 等. H13钢高温热变形特征与动态再结晶行为 [J]. 塑性工程学报, 2022, 29(6): 193
doi: 10.3969/j.issn.1007-2012.2022.06.024
21 Esquivel E V, Murr L E. Deformation effects in shocked metals and alloys [J]. Mater. Sci. Technol., 2006, 22: 438
22 Rodríguez-Martínez J A, Rusinek A, Pesci R. Experimental survey on the behaviour of AISI 304 steel sheets subjected to perforation [J]. Thin-Walled Struct., 2010, 48: 966
23 Liu M T, Guo Z L, Fan C, et al. Modeling spontaneous shear bands evolution in thick-walled cylinders subjected to external high-strain-rate loading [J]. Int. J. Solids Struct., 2016, 97-98: 336
24 Tiamiyu A A, Szpunar J A, Odeshi A G. Strain rate sensitivity and activation volume of AISI 321 stainless steel under dynamic impact loading: Grain size effect [J]. Mater. Charact., 2019, 154(20): 7
25 Gussev M N, Busby J T, Byun T S, et al. Twinning and martensitic transformations in nickel-enriched 304 austenitic steel during tensile and indentation deformations [J]. Mater. Sci. Eng., 2013, A588: 299
26 Liu C Y, Li D Z, Wei Y H, et al. Microstructure and property of TWIP steel under high speed dynamic test [J]. J. Iron Steel Res., 2010, 22(6): 48
刘春月, 李大赵, 卫英慧 等. 高速冲击条件下TWIP钢组织和性能的研究 [J]. 钢铁研究学报, 2010, 22(6): 48
27 Dai H X, Wang L, Xu X, et al. Deformation behavior of near-β Ti-5553 alloy under the impact of light gas gun [J]. Rare Met. Mater. Eng., 2018, 47: 657
代华湘, 王 琳, 徐 欣 等. Ti-5553合金在轻气炮冲击下的变形行为 [J]. 稀有金属材料与工程, 2018, 47: 657
28 Wang H H, Shi Z M, Tong Z. Surface hardening and numerical simulation on AISI304 stainless steel plates by explosive impact treatment [J]. Surf. Technol., 2018, 47(11): 54
王呼和, 史志铭, 佟 铮. 爆炸加载下AISI304不锈钢板表面硬化和数值模拟 [J]. 表面技术, 2018, 47(11): 54
29 Dougherty L M, Cerreta E K, Pfeif E A, et al. The impact of peak shock stress on the microstructure and shear behavior of 1018 steel [J]. Acta Mater., 2007, 55: 6356
30 Eskandari M, Szpunar J A. Microstructure and texture of high manganese steel subjected to dynamic impact loading [J]. Mater. Sci. Technol., 2020, 36: 1044
31 Zhang N B, Liu Q, Yang K, et al. Effects of shock-induced phase transition on spallation of a mild carbon steel [J]. Int. J. Mech. Sci., 2022, 213: 106858
32 Yang K, Li C, Zhao X J, et al. Impact-induced twinning and phase transition in a medium carbon steel [J]. J. Alloys Compd., 2021, 881: 160421
33 Wang S H, Hsiao W Y, Yang Y L, et al. Microstructural characterization and mechanical properties of duplex and super austenitic stainless steels under dynamic impact deformation [J]. J. Mater. Eng. Perform., 2021, 30: 8169
34 Chen A Y, Ruan H H, Wang J, et al. The influence of strain rate on the microstructure transition of 304 stainless steel [J]. Acta Mater., 2011, 59: 3697
35 Rösner H, Boucharat N, Markmann J, et al. In situ transmission electron microscopic observations of deformation and fracture processes in nanocrystalline palladium and Pd90Au10 [J]. Mater. Sci. Eng., 2009, A525: 102
36 Quan G F, Cai L M. Mechanism of crack nucleation analysed by in situ observation on Mg-Al-Zn alloy [J]. Mater. Sci. Forum, 2007, 539-543: 1669
37 Xie J T, Wang Q J, Wang L Y. Dynamic recrystallization analysis on austenitic stainless steel 321 alloy at different strain rates [J]. Forg. Stamp. Technol., 2019, 44(6): 178
解婧陶, 王钦娟, 王璐银. 奥氏体不锈钢321合金不同应变速率下动态再结晶分析 [J]. 锻压技术, 2019, 44(6): 178
38 Xu Y B, Yang H J, Meyers A M. Application of EBSD in the investigation of the deformation microstructure induced during high-strain rate loading [J]. Chin. J. Mater. Res., 2009, 23: 561
徐永波, 阳华杰, Meyers A M. 背散射电子衍射在高应变率变形结构研究中的应用 [J]. 材料研究学报, 2009, 23: 561
39 Tiamiyu A A, Odeshi A G, Szpunar J A. Characterization of coarse and ultrafine-grained austenitic stainless steel subjected to dynamic impact load: XRD, SEM, TEM and EBSD analyses [J]. Materialia, 2018, 4: 81
40 Yang H J, Zhang J H, Xu Y B, et al. Microstructural characterization of the shear bands in Fe-Cr-Ni single crystal by EBSD [J]. J. Mater. Sci. Technol., 2008, 24: 819
[1] MENG Xianglong, LIU Ruiliang, Li D. Y.. First Principles Study on the Precipitation and Properties of Carbides in the Surface Carburized Layer of Tantalum Alloys[J]. 金属学报, 2025, 61(5): 797-808.
[2] Tongbang AN,Jinshan WEI,Jiguo SHAN,Zhiling TIAN. Influence of Shielding Gas Composition on Microstructure Characteristics of 1000 MPa Grade Deposited Metals[J]. 金属学报, 2019, 55(5): 575-584.
[3] Ying LI,Chao SUN,Jun GONG. Performance Research of Magnesium Base Lanthanum Hexaaluminate Prepared by Co-Precipitation[J]. 金属学报, 2019, 55(5): 657-663.
[4] YAO Meiyi, LIN Yuchen, HOU Keke, LIANG Xue, HU Pengfei, ZHANG Jinlong, ZHOU Bangxin. Effect of Sn on Initial Corrosion Behavior of Zirconium Alloy in 280 LiOH Aqueous Solution[J]. 金属学报, 2019, 55(12): 1551-1560.
[5] Zhen WANG,Bangxin ZHOU,Boyang WANG,Jiao HUANG,Meiyi YAO,Jinlong ZHANG. SECOND PHASE PARTICLES AND THEIR CORROSION BEHAVIOR OF Zr-0.72Sn-0.32Fe-0.15Cr-0.97Nb ALLOY[J]. 金属学报, 2016, 52(1): 78-84.
[6] ZHANG Haixia, LI Zhongkui, ZHOU Lian, XU Bingshe, WANG Yongzhen. EFFECTS OF STRUCTURE AND INTERNAL STRESSES IN OXIDE FILMS ON CORROSION MECHANISM OF NEW ZIRCONIUM ALLOY[J]. 金属学报, 2014, 50(12): 1529-1537.
[7] ZHOU Xuefeng, CHEN Guang, YAN Shitan, ZHENG Gong, LI Pei, CHEN Feng. EXPLORATION AND RESEARCH OF A NEW Re-FREE Ni-BASED SINGLE CRYSTAL SUPERALLOY[J]. 金属学报, 2013, 49(11): 1467-1472.
[8] LI Qiang LIANG Xue PENG Jianchao LIU Renduo YU Kang ZHOU Bangxin. OXIDATION BEHAVIOR OF THE β-Nb PHASE PRECIPITATED IN Zr-2.5Nb ALLOY[J]. 金属学报, 2011, 47(7): 893-898.
[9] PAN Hongge; DU Honglin; CHEN Changpin; HAN Xiufeng; YANG Fuming (Department of Materials Science and Engineering; Zhejiang University; Hangzhou 310027)(State Key Laboratory for Magnetism; Institute of Physics; The Chinese Academy of Sciences; Beijing 100080)(Institute of Chinese Atomic Energy; Beijing 102413). STRUCTURAL CHARACTERIZATION OF THE Y_3(Fe, Mo)_(29) INTERMETALLIC COMPOUND[J]. 金属学报, 1998, 34(5): 473-482.
[10] WANG Rongming; LI Chunzhi; PING Dehai; YAN Minggao (Beijing Institute of Aeronautical Materials; Beijing 100095)(Laboratory of Atomic Imaging of Solids; Institute of Metal Research; The Chinese Academy of Sciences;Shenyang 110015)(Beijing Laboratory of Electron Microscopy; The Chinese Academy of Sciences; Beijing 100080). STUDY ON THE PLATELET PHASE IN AN YTTRIUM-CONTAINING LOW EXPANSION SUPERALLOY[J]. 金属学报, 1998, 34(4): 367-372.
[11] XIONG Weihao;HU Zhenhua;CUI Kun (State Key Laboratory of Dies Technology;Huazhong University of Science and Technology; Wuhan 430074). FORMATION MECHANISM OF MICROCRYSTAL INTERFACE LAYER IN Ti(C, N)-BASED CERMET[J]. 金属学报, 1997, 33(5): 473-478.
[12] XING Xiusan (Beijing Institute of Technology;Beijing 100081)(Manuscript received 1996-01-08;in revised form 1996-06-21). DIAGRAM OF MICRO-MESO-MACRO MULTILEVEL CONNECTED THEORY OF FRACTURE[J]. 金属学报, 1996, 32(12): 1265-1269.
[13] YANG Xiaoguang; LEI Yongquan; ZHANG Wenkui; ZHU Guangming; WANG Qidong(Zhejiang University; Hangzhou 310027). RELATIONSHIP BETWEEN CRYSTAL CHARACTERISTICS AND ELECTROCHEMICAL PROPERTIES OF Zr BASED HYDROGEN STORAGE ALLOY[J]. 金属学报, 1996, 32(11): 1194-1198.
[14] MAO Jian.fu;HE Liantong;YE Hengqiang(Laboratory of Atomic Imaging of Solids;Ihstitute of Metal Research;Chinese Academy of Sciences;Shenyang 110015) YANG Dezhuang;TANG Zhixiu(Harbin Institute of Technotogy;Harbin 150001)(Manuscript received 1994-07-05;in revised form 1995-02-24). HRTEM STUDY ON CRYSTAL STRUCTURE OF Zr_4Co_4Si_7 COMPOUND[J]. 金属学报, 1995, 31(7): 289-293.
[15] HUANG Jianshun; CHEN Junming (Shanghai Institute of Metallurgy; Academia Sinica). CRYSTAL STRUCTURE OF γ-Li_xFe_2O_3 WITH ELECTROCHEMICAL INSERTION OF Li[J]. 金属学报, 1992, 28(8): 77-83.
No Suggested Reading articles found!