|
|
Differential Microstructure Between fcc and bcc Steel Plates Under Hyper-Velocity Impact |
SUN Huanteng, MA Yunzhu, CAI Qingshan( ), WANG Jianning, DUAN Youteng, ZHANG Mengxiang |
Powder Metallurgy Research Institute, Central South University, Changsha 410083, China |
|
Cite this article:
SUN Huanteng, MA Yunzhu, CAI Qingshan, WANG Jianning, DUAN Youteng, ZHANG Mengxiang. Differential Microstructure Between fcc and bcc Steel Plates Under Hyper-Velocity Impact. Acta Metall Sin, 2025, 61(7): 1011-1023.
|
Abstract The study of the dynamic behavior of materials under impact conditions is crucial in aerospace and defense industries. These materials are subjected to high speed and hyper-velocity impacts, high temperature, high pressure, and considerable deformation. Notably, many crystal-structured steel plates exhibit similar variability when subjected to impact conditions. A current and cutting-edge topic in contemporary research is the exploration of the microstructure properties of steel plates with various crystal structures under impact. This study aims to investigate the microstructural change of various crystalline structural steel materials under impact loads with high velocities. Two typical crystalline structural steels, 304 and Q345 stainless steels, were tested in impact tests using a two-stage light-gas pistol. The microstructure features of the steel plates under impact were characterized and examined using characterization techniques like XRD, EBSD, and TEM. Under impact conditions, the 304 stainless steel plate did not show any significant flanging phenomena at the macro level. However, there is a minor degree of ε-martensite transition and micro α'-martensite transformation that occurs on 304 stainless steel plates. Austenite and martensite have a similar K-S orientation relationship. Under the impact condition, the Q345 steel plate displays macro-level flipping properties but no overt micro-level phase transition. However, the diffraction peak on the {110} crystal plane substantially increases, the space between crystal planes narrows, and the {200} crystal plane shows a considerable diffraction peak shift to the right, creating the grains' preferred orientation. The Q345 steel plate exhibits considerable crystal structure delamination under impact, whereas 304 stainless steel did not display significant crystal structure elongation. The two types of steel plates have various macroscopic fracture modes owing to their differing crystal structures. Specifically, the Q345 steel demonstrates plastic fracture properties, whereas 304 stainless steel displays almost brittle fracture characteristics. The twin grain boundary of austenite is where martensite forms based on the calibration of electron diffraction spots.
|
Received: 06 April 2023
|
|
Fund: National Natural Science Foundation of China(51931012);Natural Science Foundation of Hunan Province(S2023JJJCQN0396) |
1 |
Liang H H, Li G. Study on microstructure and properties of heat treatment Q345 steel [J]. Foundry Technol., 2018, 39: 2087
|
|
梁慧慧, 李 光. Q345钢热处理组织与性能研究 [J]. 铸造技术, 2018, 39: 2087
|
2 |
Lin W, Zhang X W, Zhao Y K, et al. Continuous cooling transformation curve of undercooling austenite about Q345 steel [J]. Mater. Sci. Technol., 2009, 17: 247
|
|
林 武, 张希旺, 赵延阔 等. Q345钢奥氏体连续冷却转变曲线(CCT图) [J]. 材料科学与工艺, 2009, 17: 247
|
3 |
Zheng S G, Yan J, Gong W W. Hypervelocity impact failure modes of typical spacecraft components [J]. Space Int., 2022, (4): 29
|
|
郑世贵, 闫 军, 宫伟伟. 航天器典型部件超高速撞击失效模式 [J]. 国际太空, 2022, (4): 29
|
4 |
Chen J, Chen Y J, Yuan B H, et al. Experimental investigation on penetration behavior of reactive fragment against steel plates [J]. Sci. Technol. Eng., 2014, 14(35): 52
|
|
陈 进, 陈元建, 袁宝慧 等. 活性破片对钢板侵彻性能的实验研究 [J]. 科学技术与工程, 2014, 14(35): 52
|
5 |
Yu T X, Zhu L, Xu J. Progress in structural impact dynamics during 2010-2020 [J]. Explos. Shock Waves, 2021, 41(12): 121401
|
|
余同希, 朱 凌, 许 骏. 结构冲击动力学进展(2010-2020) [J]. 爆炸与冲击, 2021, 41(12): 121401
|
6 |
Al-Fadhalah K J. Strain-induced martensite formation and recrystallization behavior in 304 stainless steel [J]. J. Mater. Eng. Perform., 2015, 24: 1697
|
7 |
Okayasu M, Fukui H, Ohfuji H, et al. Strain-induced martensite formation in austenitic stainless steel [J]. J. Mater. Sci., 2013, 48: 6157
|
8 |
Zhang L M, Li Z X, Hu J X, et al. Understanding the roles of deformation-induced martensite of 304 stainless steel in different stages of cavitation erosion [J]. Tribol. Int., 2021, 155: 106752
|
9 |
Zerouki M, Ouali M O, Benabou L. Metallurgical phase transformation and behavior of steels under impact loading [J]. Metall. Mater. Trans., 2020, 51A: 252
|
10 |
Luo C, Yuan H. Measurement and modeling of deformation-induced martensitic transformation in a metastable austenitic stainless steel under cyclic loadings [J]. Acta Mater., 2022, 238: 118202
|
11 |
Wang N, Chen Y N, Zhao Q Y, et al. Effect of strain rate on the strain partitioning behavior of ferrite/bainite in X80 pipeline steel [J]. Acta Metall. Sin., 2023, 59: 1299
doi: 10.11900/0412.1961.2021.00412
|
|
王 楠, 陈永楠, 赵秦阳 等. 应变速率对X80管线钢铁素体/贝氏体应变分配行为的影响 [J]. 金属学报, 2023, 59: 1299
|
12 |
Shen Y F, Li X X, Xue W Y, et al. Changes in martensite fraction of 304SS in tensile deformation [J] J. Northeast. Univ. (Nat. Sci.), 2012, 33: 1125
|
|
申勇峰, 李晓旭, 薛文颖 等. 304不锈钢拉伸变形过程中的马氏体相变 [J]. 东北大学学报(自然科学版), 2012, 33: 1125
|
13 |
Xu Y, Song R B, Wang B N, et al. Study on deformation induced α′-martensitic transformation and fracture mechanism of 304HC stainless steel wire [J]. J. Plast. Eng., 2015, 22(4): 154
|
|
徐 杨, 宋仁伯, 王宾宁 等. 304HC不锈钢钢丝形变诱导α′-马氏体相变及断裂机制 [J]. 塑性工程学报, 2015, 22(4): 154
|
14 |
Yang F, Liang J, Yang R X, et al. Strain-induced martensite and its influence in stamping of 304 stainless steel sheet [J]. J. Mech. Eng., 2021, 57(8): 175
doi: 10.3901/JME.2021.08.175
|
|
杨 钒, 梁 君, 杨瑞霞. 304不锈钢板材冲压成形中应变诱发马氏体及其影响 [J]. 机械工程学报, 2021, 57(8): 175
|
15 |
Shen Y F, Li X X, Sun X, et al. Twinning and martensite in a 304 austenitic stainless steel [J]. Mater. Sci. Eng., 2012, A552: 514
|
16 |
Liu Y, Xu H Z, Wang X F, et al. Progress in dynamic responses and microstructure evolution of the additive manufactured alloys under impact load [J]. Chin. J. High Pressure Phys., 2021, 35(4): 15
|
|
刘 洋, 徐怀忠, 汪小锋 等. 冲击载荷下增材制造金属材料的动态响应及微观结构演化研究进展 [J]. 高压物理学报, 2021, 35(4): 15
|
17 |
Singh P K, Kumar M. Hypervelocity impact behavior of projectile penetration on spacecraft structure: A review [J]. Mater. Today: Proc., 2022, 62: 3167
|
18 |
Ren S Y, Zhang Q M, Wu Q, et al. A debris cloud model for hypervelocity impact of the spherical projectile on reactive material bumper composed of polytetrafluoroethylene and aluminum [J]. Int. J. Impact Eng., 2019, 130: 124
|
19 |
Ni C H, Wang F C, Xu Q, et al. Deformation twinning in BCC iron under hypervelocity impact [J]. Trans. Beijing Inst. Technol., 2011, 31: 984
|
|
倪川皓, 王富耻, 徐 强 等. 超高速碰撞下体心立方纯铁的变形孪晶 [J]. 北京理工大学学报, 2011, 31: 984
|
20 |
Chen G X, Sang B G, Liu H W, et al. Hot deformation characteristics and dynamic recrystallization behavior of H13 steel at high temperature [J]. J. Plast. Eng., 2022, 29(6): 193
|
|
陈国鑫, 桑宝光, 刘宏伟 等. H13钢高温热变形特征与动态再结晶行为 [J]. 塑性工程学报, 2022, 29(6): 193
doi: 10.3969/j.issn.1007-2012.2022.06.024
|
21 |
Esquivel E V, Murr L E. Deformation effects in shocked metals and alloys [J]. Mater. Sci. Technol., 2006, 22: 438
|
22 |
Rodríguez-Martínez J A, Rusinek A, Pesci R. Experimental survey on the behaviour of AISI 304 steel sheets subjected to perforation [J]. Thin-Walled Struct., 2010, 48: 966
|
23 |
Liu M T, Guo Z L, Fan C, et al. Modeling spontaneous shear bands evolution in thick-walled cylinders subjected to external high-strain-rate loading [J]. Int. J. Solids Struct., 2016, 97-98: 336
|
24 |
Tiamiyu A A, Szpunar J A, Odeshi A G. Strain rate sensitivity and activation volume of AISI 321 stainless steel under dynamic impact loading: Grain size effect [J]. Mater. Charact., 2019, 154(20): 7
|
25 |
Gussev M N, Busby J T, Byun T S, et al. Twinning and martensitic transformations in nickel-enriched 304 austenitic steel during tensile and indentation deformations [J]. Mater. Sci. Eng., 2013, A588: 299
|
26 |
Liu C Y, Li D Z, Wei Y H, et al. Microstructure and property of TWIP steel under high speed dynamic test [J]. J. Iron Steel Res., 2010, 22(6): 48
|
|
刘春月, 李大赵, 卫英慧 等. 高速冲击条件下TWIP钢组织和性能的研究 [J]. 钢铁研究学报, 2010, 22(6): 48
|
27 |
Dai H X, Wang L, Xu X, et al. Deformation behavior of near-β Ti-5553 alloy under the impact of light gas gun [J]. Rare Met. Mater. Eng., 2018, 47: 657
|
|
代华湘, 王 琳, 徐 欣 等. Ti-5553合金在轻气炮冲击下的变形行为 [J]. 稀有金属材料与工程, 2018, 47: 657
|
28 |
Wang H H, Shi Z M, Tong Z. Surface hardening and numerical simulation on AISI304 stainless steel plates by explosive impact treatment [J]. Surf. Technol., 2018, 47(11): 54
|
|
王呼和, 史志铭, 佟 铮. 爆炸加载下AISI304不锈钢板表面硬化和数值模拟 [J]. 表面技术, 2018, 47(11): 54
|
29 |
Dougherty L M, Cerreta E K, Pfeif E A, et al. The impact of peak shock stress on the microstructure and shear behavior of 1018 steel [J]. Acta Mater., 2007, 55: 6356
|
30 |
Eskandari M, Szpunar J A. Microstructure and texture of high manganese steel subjected to dynamic impact loading [J]. Mater. Sci. Technol., 2020, 36: 1044
|
31 |
Zhang N B, Liu Q, Yang K, et al. Effects of shock-induced phase transition on spallation of a mild carbon steel [J]. Int. J. Mech. Sci., 2022, 213: 106858
|
32 |
Yang K, Li C, Zhao X J, et al. Impact-induced twinning and phase transition in a medium carbon steel [J]. J. Alloys Compd., 2021, 881: 160421
|
33 |
Wang S H, Hsiao W Y, Yang Y L, et al. Microstructural characterization and mechanical properties of duplex and super austenitic stainless steels under dynamic impact deformation [J]. J. Mater. Eng. Perform., 2021, 30: 8169
|
34 |
Chen A Y, Ruan H H, Wang J, et al. The influence of strain rate on the microstructure transition of 304 stainless steel [J]. Acta Mater., 2011, 59: 3697
|
35 |
Rösner H, Boucharat N, Markmann J, et al. In situ transmission electron microscopic observations of deformation and fracture processes in nanocrystalline palladium and Pd90Au10 [J]. Mater. Sci. Eng., 2009, A525: 102
|
36 |
Quan G F, Cai L M. Mechanism of crack nucleation analysed by in situ observation on Mg-Al-Zn alloy [J]. Mater. Sci. Forum, 2007, 539-543: 1669
|
37 |
Xie J T, Wang Q J, Wang L Y. Dynamic recrystallization analysis on austenitic stainless steel 321 alloy at different strain rates [J]. Forg. Stamp. Technol., 2019, 44(6): 178
|
|
解婧陶, 王钦娟, 王璐银. 奥氏体不锈钢321合金不同应变速率下动态再结晶分析 [J]. 锻压技术, 2019, 44(6): 178
|
38 |
Xu Y B, Yang H J, Meyers A M. Application of EBSD in the investigation of the deformation microstructure induced during high-strain rate loading [J]. Chin. J. Mater. Res., 2009, 23: 561
|
|
徐永波, 阳华杰, Meyers A M. 背散射电子衍射在高应变率变形结构研究中的应用 [J]. 材料研究学报, 2009, 23: 561
|
39 |
Tiamiyu A A, Odeshi A G, Szpunar J A. Characterization of coarse and ultrafine-grained austenitic stainless steel subjected to dynamic impact load: XRD, SEM, TEM and EBSD analyses [J]. Materialia, 2018, 4: 81
|
40 |
Yang H J, Zhang J H, Xu Y B, et al. Microstructural characterization of the shear bands in Fe-Cr-Ni single crystal by EBSD [J]. J. Mater. Sci. Technol., 2008, 24: 819
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|