Please wait a minute...
Acta Metall Sin  2024, Vol. 60 Issue (12): 1647-1655    DOI: 10.11900/0412.1961.2022.00581
Research paper Current Issue | Archive | Adv Search |
Effect and Mechanism of B Microalloying on the Microstructure and Mechanical Properties of CoNiV Medium-Entropy Alloy
NAN Yong1, GUAN Xu1, YAN Haile1(), TANG Shuai2, JIA Nan1(), ZHAO Xiang1, ZUO Liang1
1 Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
2 State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China
Cite this article: 

NAN Yong, GUAN Xu, YAN Haile, TANG Shuai, JIA Nan, ZHAO Xiang, ZUO Liang. Effect and Mechanism of B Microalloying on the Microstructure and Mechanical Properties of CoNiV Medium-Entropy Alloy. Acta Metall Sin, 2024, 60(12): 1647-1655.

Download:  HTML  PDF(3551KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

CoNiV is a novel medium-entropy alloy with excellent mechanical properties. Currently, alloying CoNiV with Al has been extensively employed to improve its mechanical strength. Unfortunately, the microstructure of CoNiV changes from a single phase to a dual phase due to the addition of Al, which considerably reduces its corrosion resistance. Therefore, developing new strategies to improve its mechanical properties is imperative. In this study, the microstructure and static tensile mechanical properties of (CoNiV)100 - x B x alloys (x = 0, 0.1, and 0.2, atomic fraction, %) are systematically investigated. The results revealed that the strength and ductility of CoNiV can be significantly improved by doping a small amount of B. With the introduction of 0.2%B, the yield strength, ultimate tensile strength, and elongation of CoNiV are improved, increasing by 12%, 10%, and 30%, respectively. The crystal structure, grain size, crystallographic orientation, and plastic deformation mechanism of CoNiV are not affected due to microalloying with B. At room temperature, (CoNiV)99.8B0.2 exhibits fcc structure. The plastic deformation mechanism during static tensile deformation is manifested as dislocation slip, while martensitic transformation and twin effects induced by stress are not observed. The results of the nanohardness tests indicated that doping with trace amounts of B could remarkably enhance the grain/twin boundary hardness, confirming the grain/twin boundary strengthening effect of B on CoNiV. The strengthening of grain/twin boundaries leads to increased resistance of dislocations and provides the ability to hinder crack expansion, resulting in the simultaneous enhancement of the strength and ductility of (CoNiV)99.8B0.2. Moreover, the B element dissolved into the matrix would serve as a pinning site for dislocation, thus contributing to the increased strength of CoNiV.

Key words:  medium-entropy alloy      CoNiV      B doping      grain boundary strengthening      mechanical property      toughening     
Received:  10 November 2022     
ZTFLH:  TG156.2  
Fund: National Key Research and Development Program of China(2021YFA1200203);Fundamental Research Funds for the Central Universities(N2202015)
Corresponding Authors:  YAN Haile, associate professor, Tel: (024)83681723, E-mail: yanhaile@mail.neu.edu.cn
JIA Nan, professor, Tel: (024)83681723, E-mail: jian@atm.neu.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2022.00581     OR     https://www.ams.org.cn/EN/Y2024/V60/I12/1647

Fig.1  Static tensile mechanical properties of CoNiV, (CoNiV)99.9B0.1, and (CoNiV)99.8B0.2 alloys at room temperature
(a) engineering stress-strain curves
(b) true stress-true strain curves
(c) strain-hardening rate curves
AlloyYield strength / MPaUltimate tensile strength / MPaFracture elongation / %
CoNiV968.71291.733.6
(CoNiV)99.9B0.11030.11331.634.7
(CoNiV)99.8B0.21087.41419.344.1
Table 1  Yield strengths, ultimate tensile strengths, and fracture elongations of CoNiV, (CoNiV)99.9B0.1, and (CoNiV)99.8B0.2 alloys
Fig.2  XRD spectra (a1-a3), phase distribution maps (fcc phase colored in red) overlapped with Σ3 (white), Σ5 (green), Σ7 (blue), and Σ9 (purple) coincidence site lattice (CSL) boundaries (b1-b3), and orientation maps represented by inverse pole figures (IPFs) (c1-c3) for CoNiV (a1-c1), (CoNiV)99.9B0.1 (a2-c2), and (CoNiV)99.8B0.2 (a3-c3) alloys (RD—rolling direction, ND—normal direction, LD—loading direction)
Fig.3  Quantitative characteristics of the CoNiV, (CoNiV)99.9B0.1, and (CoNiV)99.8B0.2 alloys
(a) relation between mean grain size (dm) and the content of doped B
(b) grain size (d) distributions
(c) length fractions of Σ3, Σ5, Σ7, and Σ9 CSL boundaries against the total length of all large angle grain boundaries
Fig.4  Crystal structures and microstructure characterizations of the deformed CoNiV (a1-e1) and (CoNiV)99.8B0.2 (a2-e2) alloys
(a1, a2) XRD spectra
(b1, b2) phase distribution maps (fcc phase colored in red)
(c1, c2) orientation maps represented by IPFs
(d1, d2) kernel average misorientation (KAM) maps
(e1, e2) TEM images of the dislocation plugging at the interface (Insets show the selected area electron diffraction patterns. The subscripts γ and T denote γ matrix and twin, respectively)
Fig.5  Hardnesses of grain interior (HGI), grain boundaries (HGB), and twin boundaries (HTB) (Inset shows the schematic of nanoindentation test)
AlloyHGB / HGIHTB / HGI
CoNiV1.191.21
(CoNiV)99.8B0.21.281.46
Table 2  Ratios of hardness measured at different regions of CoNiV and (CoNiV)99.8B0.2 alloys
1 Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
2 Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Mater. Sci. Eng., 2004, A375-377: 213
3 Zhang H F, Yan H L, Fang F, et al. Orientation-dependent mechanical responses and plastic deformation mechanisms of FeMnCoCrNi high-entropy alloy: A molecular dynamics study [J]. Acta Metall. Sin. (Engl. Lett.), 2021, 34: 1511
4 Shi P J, Li R G, Li Y, et al. Hierarchical crack buffering triples ductility in eutectic herringbone high-entropy alloys [J]. Science, 2021, 373: 912
doi: 10.1126/science.abf6986 pmid: 34413235
5 Wang Z W, Lu W J, An F C, et al. High stress twinning in a compositionally complex steel of very high stacking fault energy [J]. Nat. Commun., 2022, 13: 3598
doi: 10.1038/s41467-022-31315-2 pmid: 35739123
6 Zhang T, Wu Y T, Yu Y H, et al. High throughput screening driven discovery of Mn5Co10Fe30Ni55O x as electrocatalyst for water oxidation and electrospinning synthesis [J]. Appl. Surf. Sci., 2022, 588: 152959
7 Zhang H F, Yan H L, Yu H, et al. The effect of Co and Cr substitutions for Ni on mechanical properties and plastic deformation mechanism of FeMnCoCrNi high entropy alloys [J]. J. Mater. Sci. Technol., 2020, 48: 146
doi: 10.1016/j.jmst.2020.03.010
8 He Z F, Jia N, Ma D, et al. Joint contribution of transformation and twinning to the high strength-ductility combination of a FeMnCoCr high entropy alloy at cryogenic temperatures [J]. Mater. Sci. Eng., 2019, A759: 437
9 Wang M L, Lu Y P, Wang T M, et al. A novel bulk eutectic high-entropy alloy with outstanding as-cast specific yield strengths at elevated temperatures [J]. Scr. Mater., 2021, 204: 114132
10 Zhang H F, Yan H L, Fang F, et al. Molecular dynamic simulations of deformation mechanisms for FeMnCoCrNi high-entropy alloy bicrystal micropillars [J]. Acta Metall. Sin., 2023, 59: 1051
doi: 10.11900/0412.1961.2021.00517
张海峰, 闫海乐, 方 烽 等. FeMnCoCrNi高熵合金双晶微柱变形机制的分子动力学模拟 [J]. 金属学报, 2023, 59: 1051
doi: 10.11900/0412.1961.2021.00517
11 Zhao Y L, Yang T, Tong Y, et al. Heterogeneous precipitation behavior and stacking-fault-mediated deformation in a CoCrNi-based medium-entropy alloy [J]. Acta Mater., 2017, 138: 72
12 Gludovatz B, Hohenwarter A, Thurston K V S, et al. Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures [J]. Nat. Commun., 2016, 7: 10602
doi: 10.1038/ncomms10602 pmid: 26830651
13 He J Y, Wang H, Huang H L, et al. A precipitation-hardened high-entropy alloy with outstanding tensile properties [J]. Acta Mater., 2016, 102: 187
14 Sohn S S, da Silva A K, Ikeda Y, et al. Ultrastrong medium-entropy single-phase alloys designed via severe lattice distortion [J]. Adv. Mater., 2019, 31: 1807142
15 Park J M, Yang D C, Kim H J, et al. Ultra-strong and strain-hardenable ultrafine-grained medium-entropy alloy via enhanced grain-boundary strengthening [J]. Mater. Res. Lett., 2021, 9: 315
16 Yin B L, Maresca F, Curtin W A. Vanadium is an optimal element for strengthening in both fcc and bcc high-entropy alloys [J]. Acta Mater., 2020, 188: 486
17 Yeh J W. Alloy design strategies and future trends in high-entropy alloys [J]. JOM, 2013, 65: 1759
18 Chen X F, Wang Q, Cheng Z Y, et al. Direct observation of chemical short-range order in a medium-entropy alloy [J]. Nature, 2021, 592: 712
19 Yang D C, Jo Y H, Ikeda Y, et al. Effects of cryogenic temperature on tensile and impact properties in a medium-entropy VCoNi alloy [J]. J. Mater. Sci. Technol., 2021, 90: 159
doi: 10.1016/j.jmst.2021.02.034
20 Luo H, Sohn S S, Lu W J, et al. A strong and ductile medium-entropy alloy resists hydrogen embrittlement and corrosion [J]. Nat. Commun., 2020, 11: 3081
doi: 10.1038/s41467-020-16791-8 pmid: 32555177
21 Sohn S S, Kim D G, Jo Y H, et al. High-rate superplasticity in an equiatomic medium-entropy VCoNi alloy enabled through dynamic recrystallization of a duplex microstructure of ordered phases [J]. Acta Mater., 2020, 194: 106
22 Jang T J, Choi W S, Kim D W, et al. Shear band-driven precipitate dispersion for ultrastrong ductile medium-entropy alloys [J]. Nat. Commun., 2021, 12: 4703
doi: 10.1038/s41467-021-25031-6 pmid: 34349105
23 Nutor R K, Cao Q P, Wei R, et al. A dual-phase alloy with ultrahigh strength-ductility synergy over a wide temperature range [J]. Sci. Adv., 2021, 7: eabi4404
24 Tian J, Tang K, Wu Y K, et al. Effects of Al alloying on microstructure and mechanical properties of VCoNi medium entropy alloy [J]. Mater. Sci. Eng., 2021, A811: 141054
25 Tu J, Yang W H, Xu K, et al. Effect of Ta content on stacking fault energy and microstructure characteristics of (VCoNi)100 - X Ta X (X = 0, 0.05, 0.5 and 1) medium entropy alloy [J]. Mater. Lett., 2021, 305: 130770
26 Han Z H, Guo Y N, Yang J, et al. Effect of Al addition on the corrosion behavior of the VCoNi medium-entropy alloys [J]. J. Alloys Compd., 2022, 920: 165954
27 Kontis P, Yusof H A M, Pedrazzini S, et al. On the effect of boron on grain boundary character in a new polycrystalline superalloy [J]. Acta Mater., 2016, 103: 688
28 Seol J B, Bae J W, Li Z M, et al. Boron doped ultrastrong and ductile high-entropy alloys [J]. Acta Mater., 2018, 151: 366
29 Seol J B, Bae J W, Kim J G, et al. Short-range order strengthening in boron-doped high-entropy alloys for cryogenic applications [J]. Acta Mater., 2020, 194: 366
doi: 10.1016/j.actamat.2020.04.052
30 Li G R, Gao L P, Wang H M, et al. Effects of boron on microstructure and properties of microwave sintered FeCoNi1.5CuY0.2 high-entropy alloy [J]. J. Alloys Compd., 2021, 866: 157848
31 Kang B, Kong T, Dan N H, et al. Effect of boron addition on the microstructure and mechanical properties of refractory Al0.1CrNbVMo high-entropy alloy [J]. Int. J. Refract. Met. Hard Mater., 2021, 100: 105636
32 Yang Z, Cong D Y, Yuan Y, et al. Ultrahigh cyclability of a large elastocaloric effect in multiferroic phase-transforming materials [J]. Mater. Res. Lett., 2019, 7: 137
doi: 10.1080/21663831.2019.1566182
33 Yan H L, Liu H X, Zhao Y, et al. Impact of B alloying on ductility and phase transition in the Ni-Mn-based magnetic shape memory alloys: Insights from first-principles calculation [J]. J. Mater. Sci. Technol., 2021, 74: 27
34 Huang X M, Zhao Y, Yan H L, et al. A multielement alloying strategy to improve elastocaloric and mechanical properties in Ni-Mn-based alloys via copper and boron [J]. Scr. Mater., 2020, 185: 94
35 Pujar M G, Laha K, Dayal R K, et al. Studies on the effect of B and B + Ce additions on the electrochemical corrosion behaviour of 9Cr-1Mo using electrochemical noise (EN) technique [J]. Int. J. Electrochem. Sci., 2008, 3: 891
36 Wang L. Mechanical Properties of Materials [M]. 3rd Ed., Shenyang: Northeastern University Press, 2014: 80
王 磊. 材料的力学性能 [M]. 第 3版, 沈阳: 东北大学出版社, 2014: 80
37 Jia N, Roters F, Eisenlohr P, et al. Non-crystallographic shear banding in crystal plasticity FEM simulations: Example of texture evolution in α-brass [J]. Acta Mater., 2012, 60: 1099
38 Ullman N, Luko S. Statistical standards and ASTM [J]. Qual. Eng., 2010, 22: 358
39 Li Z M, Pradeep K G, Deng Y, et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off [J]. Nature, 2016, 534: 227
40 Li Z M, Tasan C C, Pradeep K G, et al. A TRIP-assisted dual-phase high-entropy alloy: Grain size and phase fraction effects on deformation behavior [J]. Acta Mater., 2017, 131: 323
41 Su J, Raabe D, Li Z M. Hierarchical microstructure design to tune the mechanical behavior of an interstitial TRIP-TWIP high-entropy alloy [J]. Acta Mater., 2019, 163: 40
42 Wang H W, He Z F, Jia N. Microstructure and mechanical properties of a FeMnCoCr high-entropy alloy with heterogeneous structure [J]. Acta Metall. Sin., 2021, 57: 632
doi: 10.11900/0412.1961.2020.00225
王洪伟, 何竹风, 贾 楠. 非均匀组织FeMnCoCr高熵合金的微观结构和力学性能 [J]. 金属学报, 2021, 57: 632
doi: 10.11900/0412.1961.2020.00225
43 Tang Z Y, Wu Z Q, Zan N, et al. Microstructure evolution and deformation behavior of high manganese TRIP/TWIP symbiotic effect steels under high-speed deformation [J]. Acta Metall. Sin., 2011, 47: 1426
唐正友, 吴志强, 昝 娜 等. 高锰TRIP/TWIP效应共生钢高速变形过程中的组织演变及变形行为 [J]. 金属学报, 2011, 47: 1426
doi: 10.3724/SP.J.1037.2011.00311
44 Deng Y, Tasan C C, Pradeep K G, et al. Design of a twinning-induced plasticity high entropy alloy [J]. Acta Mater., 2015, 94: 124
45 Li J G, Ding Y J, Peng X D, et al. Effects of water quenching process on the microstructure and mechanical properties of TWIP steel [J]. Acta Metall. Sin., 2010, 46: 221
李激光, 丁亚杰, 彭兴东 等. 水淬工艺对TWIP钢显微组织和力学性能的影响 [J]. 金属学报, 2010, 46: 221
doi: 10.3724/SP.J.1037.2009.00180
46 Sanyal S, Waghmare U V, Subramanian P R, et al. Effect of dopants on grain boundary decohesion of Ni: A first-principles study [J]. Appl. Phys. Lett., 2008, 93: 223113
47 Stinville J C, Gallup K, Pollock T M. Transverse creep of nickel-base superalloy bicrystals [J]. Metall. Mater. Trans., 2015, 46A: 2516
48 Viswanathan G B, Sarosi P M, Henry M F, et al. Investigation of creep deformation mechanisms at intermediate temperatures in René 88 DT [J]. Acta Mater., 2005, 53: 3041
49 Raabe D, Herbig M, Sandlöbes S, et al. Grain boundary segregation engineering in metallic alloys: A pathway to the design of interfaces [J]. Curr. Opin. Solid State Mater. Sci., 2014, 18: 253
50 Wu R Q, Freeman A J, Olson G B. First principles determination of the effects of phosphorus and boron on iron grain boundary cohesion [J]. Science, 1994, 265: 376
pmid: 17838041
51 Messmer R P, Briant C L. The role of chemical bonding in grain boundary embrittlement [J]. Acta Metall., 1982, 30: 457
52 Basu I, Chen M, Wheeler J, et al. Segregation-driven exceptional twin-boundary strengthening in lean Mg-Zn-Ca alloys [J]. Acta Mater., 2022, 229: 117746
53 Kraft R H, Molinari J F. A statistical investigation of the effects of grain boundary properties on transgranular fracture [J]. Acta Mater., 2008, 56: 4739
54 Orowan E. Fracture and strength of solids [J]. Rep. Prog. Phys., 1949, 12: 185
[1] ZHANG Qiankun, HU Xiaofeng, JIANG Haichang, RONG Lijian. Effect of Si on Microstructure and Mechanical Properties of a 9Cr Ferritic/Martensitic Steel[J]. 金属学报, 2024, 60(9): 1200-1212.
[2] YU Yunhe, XIE Yong, CHEN Peng, DONG Haokai, HOU Jixin, XIA Zhixin. Interfacial Compatibility for Laser Melting Deposition of CoCrNiCu Medium-Entropy Alloy on 316L Austenitic Stainless Steel Surface[J]. 金属学报, 2024, 60(9): 1213-1228.
[3] ZHOU Mu, WANG Qian, WANG Yanxu, ZHAI Zirong, HE Lunhua, LI Bing, MA Yingjie, LEI Jiafeng, YANG Rui. Effect of Prewelding Pretreatment on Welding Residual Stress of Titanium Alloy Thick Plate[J]. 金属学报, 2024, 60(8): 1064-1078.
[4] CHEN Cheng, YANG Guangyu, JIN Menghui, WANG Qiang, TANG Xin, CHENG Huimin, JIE Wanqi. Effect of the Mold Positive and Negative Rotation on the Microstructure and Room-Temperature Mechanical Properties of K4169 Superalloy[J]. 金属学报, 2024, 60(7): 926-936.
[5] MENG Yujia, XI Tong, YANG Chunguang, ZHAO Jinlong, ZHANG Xinrui, YU Yingjie, YANG Ke. Effect of Gallium Addition on Mechanical and Antibacterial Properties of 304L Stainless Steel[J]. 金属学报, 2024, 60(7): 890-900.
[6] XIE Liwen, ZHANG Lilong, LIU Yanyan, ZHANG Mingyang, WANG Shaogang, JIAO Da, LIU Zengqian, ZHANG Zhefeng. Fabrication and Mechanical Properties of Bioinspired Mg-Based Composites Reinforced by Stainless Steel Fibers[J]. 金属学报, 2024, 60(6): 760-769.
[7] XU Renjie, TU Xin, HU Bin, LUO Haiwen. Microstructure and Mechanical Properties of Cu-V Dual Alloyed 3Mn Steel[J]. 金属学报, 2024, 60(6): 817-825.
[8] ZENG Li, WANG Guilan, ZHANG Haiou, ZHAI Wenzheng, ZHANG Yong, ZHANG Mingbo. Microstructure and Mechanical Properties of GH4169D Superalloy Fabricated by Hybrid Arc and Micro-Rolling Additive Manufacturing[J]. 金属学报, 2024, 60(5): 681-690.
[9] WANG Zheng, WANG Zhenyu, WANG Aiying, YANG Wei, KE Peiling. Influence of Micro-Arc Oxidation Time on Structure and Properties of MAO/Cr Composite Coatings[J]. 金属学报, 2024, 60(5): 691-698.
[10] WANG Jianqiang, LIU Weifeng, LIU Sheng, XU Bin, SUN Mingyue, LI Dianzhong. Effect of Aging Treatment at 700oC on Microstructure and Mechanical Properties of 9Cr ODS Steel[J]. 金属学报, 2024, 60(5): 616-626.
[11] JIANG Haowen, PENG Wei, FAN Zengwei, WANG Yangxin, LIU Tengshi, DONG Han. Effect of Ag on Microstructure and Mechanical Properties of Austenitic Stainless Steel[J]. 金属学报, 2024, 60(4): 434-442.
[12] TIAN Teng, ZHA Min, YIN Haoliang, HUA Zhenming, JIA Hailong, WANG Huiyuan. Enhanced Mechanical Properties and Thermal Stability Mechanism of a High Solid Solution Al-Mg Alloy Processed by Cryogenic High-Reduction Hard-Plate Rolling[J]. 金属学报, 2024, 60(4): 473-484.
[13] ZHANG Guangying, LI Yan, HUANG Liying, DING Wei. Process Design and Microstructure Control of Medium Manganese Steel with Continuous Yield and High Strength Yield Ratio[J]. 金属学报, 2024, 60(4): 443-452.
[14] YANG Jie, HUANG Sensen, YIN Hui, ZHAI Ruizhi, MA Yingjie, XIANG Wei, LUO Hengjun, LEI Jiafeng, YANG Rui. Inhomogeneity Analyses of Microstructure and Mechanical Properties of TC21 Titanium Alloy Variable Cross-section Die Forgings for Aviation[J]. 金属学报, 2024, 60(3): 333-347.
[15] HU Baojia, ZHENG Qinyuan, LU Yi, JIA Chunni, LIANG Tian, ZHENG Chengwu, LI Dianzhong. Recrystallization Controlling in a Cold-Rolled Medium Mn Steel and Its Effect on Mechanical Properties[J]. 金属学报, 2024, 60(2): 189-200.
No Suggested Reading articles found!