Please wait a minute...
Acta Metall Sin  2024, Vol. 60 Issue (2): 220-230    DOI: 10.11900/0412.1961.2022.00005
Research paper Current Issue | Archive | Adv Search |
Molecular Dynamics Simulation of Tensile Mechanical Properties and Deformation Mechanism of Oxygen-Containing Nano-Polycrystalline α-Ti
REN Junqiang1,2, SHAO Shan1, WANG Qi3, LU Xuefeng1(), XUE Hongtao1, TANG Fuling1
1 State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
2 State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
3 School of Energy Engineering, Huanghuai University, Zhumadian 463000, China
Cite this article: 

REN Junqiang, SHAO Shan, WANG Qi, LU Xuefeng, XUE Hongtao, TANG Fuling. Molecular Dynamics Simulation of Tensile Mechanical Properties and Deformation Mechanism of Oxygen-Containing Nano-Polycrystalline α-Ti. Acta Metall Sin, 2024, 60(2): 220-230.

Download:  HTML  PDF(3762KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Titanium (Ti) has a strong sensitivity to oxygen atoms. Adding interstitial oxygen to pure Ti can greatly alter its mechanical behavior. Oxygen atoms increase strength and hardness while making Ti brittle. Therefore, controlling the oxygen content in Ti is extremely important. To better understand the influence of oxygen on the mechanical behavior of pure Ti, the plastic deformation behavior of nano-polycrystalline α-Ti with different interstitial oxygen content was studied. Molecular dynamic simulations were performed using the second nearest-neighbor modified embedded atom method and the charge equilibration (Qeq) method to investigate the effect of O content, tensile temperature, and strain rate on the tensile mechanical properties and deformation mechanism of nano-polycrystalline α-Ti. Results indicate that the yield stress of nano-polycrystalline α-Ti increases with the increase of interstitial O content. {101¯0}<101¯2> deformation twin was observed when the O content is less than 0.3%, and twin growth was mediated by well-defined “zonal dislocations” at the twin boundary. Different activated slip systems were transformed and diversified when the O content is larger than 0.3%, that is, the prismatic, basal, and pyramidal <c + a> slip systems were simultaneously activated, and the dislocation type changed to edge dislocations. The plastic deformation of nano-polycrystalline α-Ti was mediated by dislocation and grain boundary. In addition, the mobility of the grain boundary increased significantly with the increase of tensile temperature and strain rate. The formation of new grains was accompanied by Tihcp→Tibcc→Tihcp phase transformation, which was due to the relative rotation of the grains. The number of new grains increased with the increase of strain rate. The current work reveals the mechanical properties and deformation mechanism of nano-polycrystalline α-Ti, which promotes the design, and development of Ti-based nano-structured alloys with superior mechanical properties.

Key words:  nano-polycrystalline α-Ti      molecular dynamics      dislocation      grain boundary migration     
Received:  04 January 2022     
ZTFLH:  TG146.2  
Fund: National Key Research and Development Program of China(2017YFA0700701);National Natural Science Foundation of China(52061025);National Natural Science Foundation of China(51701189);National Natural Science Foundation of China(51701189);State Key Laboratory for Mechanical Behavior of Materials(20192104);Key Research Program of Education Department of Gansu Province(GSSYLXM-03)
Corresponding Authors:  LU Xuefeng, professor, Tel: (0931)2976688, E-mail: lxfeng@lut.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2022.00005     OR     https://www.ams.org.cn/EN/Y2024/V60/I2/220

Fig.1  Schematic diagram of calculation model (The left side grains G1-G5 correspond to the right side grains G1′-G5′, respectively)
Parameterhcp TiDimer OUnit
Ec4.872.56eV
Re0.2920.121nm
α4.71956.8800-
A0.661.44-
t(1)6.800.10-
t(2)-2.000.11-
t(3)-12.000.00-
β(0)2.705.47-
β(1)1.005.30-
β(2)3.005.18-
β(3)1.005.57-
Cmin1.002.00-
Cmax1.442.80-
χ0-1.19210.11eV·e-1
J08.43620.5eV·e-2
ΔE(2)7.975.63eV
ΔE(3)105 a105 aeV
ζ8.323.9nm-1
Z1.4080.00e
Table 1  2NNMEAM + Qeq parameters of pure Ti and O[15]
ParameterTi-OUnit
ΔEc1.5280eV
Re0.20649nm
α7.4455-
d0.01-
Cmin(i j i)1.00-
Cmin(j i j)0.97-
Cmin(i i j)1.46-
Cmin(i j j)1.46-
Cmax(i j i)2.80-
Cmax(j i j)2.51-
Cmax(i i j)2.80-
Cmax(i j j)2.80-
ρ0(O) / ρ0(Ti)12.0-
Table 2  2NNMEAM parameters for the Ti-O binary systems[15]
Fig.2  Tensile stress-strain curves of polycrystalline α-Ti with O content at 300 K and 5.0 × 108 s-1 (a) and of Ti-0.3O with temperature at 5.0 × 108 s-1 (b) and strain rate at 300 K (c)
Fig.3  Work hardening caused by dislocation tangle after tensile of polycrystalline Ti-0.1O (The red atom represents the hcp structure, the green atom the fcc structure, the blue atom the bcc structure, and the white atom the grain boundary atom and the disordered atom being not able to be recognized by OVITO, which are represented by OTHER. Same as in Figs.6-9 and 12) (a, c) atomic diagrams at strains ε = 0 (a) and 0.064 (c), respectively (b) diagram with only fcc atoms and dislocation lines at ε = 0.062 (d) dislocation tangle diagram with only fcc atoms and dislocation lines at ε = 0.064
Fig.4  Total dislocation density with various O contents and strains
Fig.5  Activated dislocation types in polycrystalline α-Ti under tensile loading at different O contents
Fig.6  Atomic structure of twin{101¯1}<101¯2¯> (a) and “zonal dislocation” on twin plane (b)
Fig.7  Formation of stacking faults during tensile of polycrystalline Ti-0.1O at 300 K and ε = 0.191
Fig.8  Snapshots of transformation process of Tihcp→Tibcc→Tihcp of polycrystalline Ti-0.3O at 300 K (a-c) Tihcp→Tibcc (d-f) Tibcc→Tihcp (g) oxygen atom pinning grain boundary
Fig.9  Grain boundary movement of polycrystalline Ti-0.3O at 300 K (a-c), 500 K (d-f), and 700 K (g-i) with ε = 0 (a, d, g), ε = 0.086 (b, e, h), and ε = 0.166 (c, f, i) (Black dotted circles in Figs.9b, c, e, f, h, and i represent the disordered atoms caused by lattice distortion after adding interstitial O atoms, and dotted yellow circles represent the disordered atoms produced during the strain at different temperatures)
Fig.10  Atomic fraction curves of bcc (a), hcp (b), fcc (c), and OTHER (d) atoms at different strain rates
Fig.11  Number of grains in polycrystalline Ti-0.3O under tensile loading at different strain rates
Fig.12  Unstable phase transition during tenison of polycrystalline Ti-0.3O (a-c), and schematic of Tihcp→Tibcc phase transition mechanism (d) (μ—a parameter describing relative slip distance)
Fig.13  Relationship between proportion of bcc atoms and strain during tension of polycrystalline Ti-0.3O at different temperatures
1 Tabie V M, Li C, Saifu W, et al. Mechanical properties of near alpha titanium alloys for high-temperature applications—A review [J]. Aircr. Eng. Aerosp. Technol., 2020, 92: 521
2 Gao P F, Fu M W, Zhan M, et al. Deformation behavior and microstructure evolution of titanium alloys with lamellar microstructure in hot working process: A review [J]. J. Mater. Sci. Technol., 2020, 39: 56
doi: 10.1016/j.jmst.2019.07.052
3 Dong Y H, Chen I W. Onset criterion for flash sintering [J]. J. Am. Ceram. Soc., 2015, 98: 3624
doi: 10.1111/jace.2015.98.issue-12
4 Mahata A, Sikdar K. Molecular dynamics simulation of nanometer scale mechanical properties of hexagonal Mg-Li alloy [J]. J. Magnes. Alloy., 2016, 4: 36
5 Suryanarayana C. Structure and properties of nanocrystalline materials [J]. Bull. Mater. Sci., 1994, 17: 307
doi: 10.1007/BF02745220
6 Hajizadeh K, Alamdari S G, Eghbali B. Stored energy and recrystallization kinetics of ultrafine grained titanium processed by severe plastic deformation [J]. Physica, 2013, 417B: 33
7 Huang Q S, Zhu Q, Chen Y B, et al. Twinning-assisted dynamic adjustment of grain boundary mobility [J]. Nat. Commun., 2021, 12: 6695
doi: 10.1038/s41467-021-27002-3 pmid: 34795234
8 Liu X, Sun W K, Liew K M. Multiscale modeling of crystal plastic deformation of polycrystalline titanium at high temperatures [J]. Comput. Methods Appl. Mech. Eng., 2018, 340: 932
doi: 10.1016/j.cma.2018.06.026
9 Sotniczuk A, Kuczyńska-Zemła D, Królikowski A, et al. Enhancement of the corrosion resistance and mechanical properties of nanocrystalline titanium by low-temperature annealing [J]. Corros. Sci., 2019, 147: 342
doi: 10.1016/j.corsci.2018.11.016
10 Ren J Q, Wang Q, Lu X F, et al. Effect of oxygen content on active deformation systems in pure titanium polycrystals [J]. Mater. Sci. Eng., 2018, A731: 530
11 Conrad H, Okasaki K, Gadgil V, et al. Dislocation structure and the strength of titanium [A]. Electron Microscopy and Structure of Materials [M]. Berkeley: University of California Press, 1972: 438
12 Shechtman D, Brandon D G. Orientation dependent slip in polycrystalline titanium [J]. J. Mater. Sci., 1973, 8: 1233
doi: 10.1007/BF00549337
13 Yu Q, Qi L, Tsuru T, et al. Origin of dramatic oxygen solute strengthening effect in titanium [J]. Science, 2015, 347: 635
doi: 10.1126/science.1260485
14 Voronoi G. Nouvelles applications des paramètres continus à théorie des formes quadratiques. Deuxième Mémoire. Recherches sur les paralléloèdres primitifs [J]. J. Reine Angew. Math., 1909, (136): 67
15 Lee E, Lee K R, Baskes M I, et al. A modified embedded-atom method interatomic potential for ionic systems: 2NNMEAM + Qeq [J]. Phys. Rev., 2016, 93B: 144110
16 Rose J H, Smith J R, Guinea F, et al. Universal features of the equation of state of metals [J]. Phys. Rev., 1984, 29B: 2963
17 Plimpton S. Fast parallel algorithms for short-range molecular dynamics [J]. J. Comput. Phys., 1995, 117: 1
18 Hirel P. Atomsk: A tool for manipulating and converting atomic data files [J]. Comput. Phys. Commun., 2015, 197: 212
doi: 10.1016/j.cpc.2015.07.012
19 Stukowski A. Visualization and analysis of atomistic simulation data with OVITO—The Open Visualization Tool [J]. Modell. Simul. Mater. Sci. Eng., 2010, 18: 015012
20 Li J. AtomEye: An efficient atomistic configuration viewer [J]. Modell. Simul. Mater. Sci. Eng., 2003, 11: 173
doi: 10.1088/0965-0393/11/2/305
21 Sills R B, Cai W. Solute drag on perfect and extended dislocations [J]. Philos. Mag., 2016, 96: 895
doi: 10.1080/14786435.2016.1142677
22 Stukowski A, Bulatov V V, Arsenlis A. Automated identification and indexing of dislocations in crystal interfaces [J]. Modell. Simul. Mater. Sci. Eng., 2012, 20: 085007
23 Ikeda H, Qi Y, Çagin T, et al. Strain rate induced amorphization in metallic nanowires [J]. Phys. Rev. Lett., 1999, 82: 2900
doi: 10.1103/PhysRevLett.82.2900
24 Wen Y H, Zhu Z Z, Zhu R Z. Molecular dynamics study of the mechanical behavior of nickel nanowire: Strain rate effects [J]. Comput. Mater. Sci., 2008, 41: 553
25 Tang W H, Zhang J, Wu J Y, et al. Mechanical properties and enhancement mechanisms of titanium-graphene nanocomposites [J]. Acta Mech. Sin., 2020, 36: 855
doi: 10.1007/s10409-020-00968-x
26 Li B, Ma E. Zonal dislocations mediating $\{10\bar{1}1\}$ $<10\bar{1}\bar{2}>$ twinning in magnesium [J]. Acta. Mater., 2009, 57: 1734
doi: 10.1016/j.actamat.2008.12.016
27 Ren J Q, Sun Q Y, Xiao L, et al. Atomistic simulation of tension-compression asymmetry and its mechanism in titanium single-crystal nanopillars oriented along the $[11\bar{2}0]$ direction [J]. Comput. Mater. Sci., 2018, 147: 272
doi: 10.1016/j.commatsci.2018.02.029
28 Sakai T, Fine M E. Plastic deformation of Ti-Al single crystals in prismatic slip [J]. Acta. Metall., 1974, 22: 1359
doi: 10.1016/0001-6160(74)90036-4
29 Conrad H. Effect of interstitial solutes on the strength and ductility of titanium [J]. Prog. Mater. Sci., 1981, 26: 123
doi: 10.1016/0079-6425(81)90001-3
30 Wang Y N, Chen S J, Dong X C. Dislocation Theory and Its Application [M]. Beijing: Metallurgical Industry Press, 2007: 101
王亚男, 陈树江, 董希淳. 位错理论及其应用 [M]. 北京: 冶金工业出版社, 2007: 101
31 Wang Y B, Li B Q, Sui M L, et al. Deformation-induced grain rotation and growth in nanocrystalline Ni [J]. Appl. Phys. Lett., 2008, 92: 011903
32 Hasan M S, Lee R, Xu W W. Deformation nanomechanics and dislocation quantification at the atomic scale in nanocrystalline magnesium [J]. J. Magnes. Alloy., 2020, 8: 1296
33 Ghaffarian H, Taheri A K, Kang K, et al. Molecular dynamics simulation study of the effect of temperature and grain size on the deformation behavior of polycrystalline cementite [J]. Scr. Mater., 2015, 95: 23
doi: 10.1016/j.scriptamat.2014.09.022
34 Chen P, Wang F X, Li B. Transitory phase transformations during $\{10\bar{1}2\}$ twinning in titanium [J]. Acta Mater., 2019, 171: 65
doi: 10.1016/j.actamat.2019.04.002
35 Zhang H, Pan A Q, Hei R Y, et al. An atomistic simulation on the tensile and compressive deformation mechanisms of nano-polycrystalline Ti [J]. Appl. Phys., 2021, 127A: 362
36 Zope R R, Mishin Y. Interatomic potentials for atomistic simulations of the Ti-Al system [J]. Phys. Rev., 2003, 68B: 024102
37 Mehl M J, Papaconstantopoulos D A. Tight-binding study of high-pressure phase transitions in titanium: Alpha to omega and beyond [J]. Europhys. Lett., 2002, 60: 248
doi: 10.1209/epl/i2002-00356-y
[1] HAN Weizhong, LU Yan, ZHANG Yuheng. Mechanism of Ductile-to-Brittle Transition in Body-Centered-Cubic Metals:A Brief Review[J]. 金属学报, 2023, 59(3): 335-348.
[2] HAN Dong, ZHANG Yanjie, LI Xiaowu. Effect of Short-Range Ordering on the Tension-Tension Fatigue Deformation Behavior and Damage Mechanisms of Cu-Mn Alloys with High Stacking Fault Energies[J]. 金属学报, 2022, 58(9): 1208-1220.
[3] TIAN Ni, SHI Xu, LIU Wei, LIU Chuncheng, ZHAO Gang, ZUO Liang. Effect of Pre-Tension on the Fatigue Fracture of Under-Aged 7N01 Aluminum Alloy Plate[J]. 金属学报, 2022, 58(6): 760-770.
[4] ZHENG Shijian, YAN Zhe, KONG Xiangfei, ZHANG Ruifeng. Interface Modifications on Strength and Plasticity of Nanolayered Metallic Composites[J]. 金属学报, 2022, 58(6): 709-725.
[5] GAO Chuan, DENG Yunlai, WANG Fengquan, GUO Xiaobin. Effect of Creep Aging on Mechanical Properties of Under-Aged 7075 Aluminum Alloy[J]. 金属学报, 2022, 58(6): 746-759.
[6] WANG Jiangwei, CHEN Yingbin, ZHU Qi, HONG Zhe, ZHANG Ze. Grain Boundary Dominated Plasticity in Metallic Materials[J]. 金属学报, 2022, 58(6): 726-745.
[7] LI Haiyong, LI Saiyi. Effect of Temperature on Migration Behavior of <111> Symmetric Tilt Grain Boundaries in Pure Aluminum Based on Molecular Dynamics Simulations[J]. 金属学报, 2022, 58(2): 250-256.
[8] WU Xiaolei, ZHU Yuntian. Heterostructured Metallic Materials: Plastic Deformation and Strain Hardening[J]. 金属学报, 2022, 58(11): 1349-1359.
[9] LAN Liangyun, KONG Xiangwei, QIU Chunlin, DU Linxiu. A Review of Recent Advance on Hydrogen Embrittlement Phenomenon Based on Multiscale Mechanical Experiments[J]. 金属学报, 2021, 57(7): 845-859.
[10] AN Xudong, ZHU Te, WANG Qianqian, SONG Yamin, LIU Jinyang, ZHANG Peng, ZHANG Zhaokuan, WAN Mingpan, CAO Xingzhong. Interaction Mechanism of Dislocation and Hydrogen in Austenitic 316 Stainless Steel[J]. 金属学报, 2021, 57(7): 913-920.
[11] SHI Zengmin, LIANG Jingyu, LI Jian, WANG Maoqiu, FANG Zifan. In Situ Analysis of Plastic Deformation of Lath Martensite During Tensile Process[J]. 金属学报, 2021, 57(5): 595-604.
[12] LIANG Jinjie, GAO Ning, LI Yuhong. Interaction Between Interstitial Dislocation Loop and Micro-Crack in bcc Iron Investigated by Molecular Dynamics Method[J]. 金属学报, 2020, 56(9): 1286-1294.
[13] LI Meilin, LI Saiyi. Motion Characteristics of <c+a> Edge Dislocation on the Second-Order Pyramidal Plane in Magnesium Simulated by Molecular Dynamics[J]. 金属学报, 2020, 56(5): 795-800.
[14] LI Yuancai, JIANG Wugui, ZHOU Yu. Effect of Nanopores on Tensile Properties of Single Crystal/Polycrystalline Nickel Composites[J]. 金属学报, 2020, 56(5): 776-784.
[15] LI Yuancai, JIANG Wugui, ZHOU Yu. Effect of Temperature on Mechanical Propertiesof Carbon Nanotubes-Reinforced Nickel Nano-Honeycombs[J]. 金属学报, 2020, 56(5): 785-794.
No Suggested Reading articles found!