|
|
Molecular Dynamics Simulation of Tensile Mechanical Properties and Deformation Mechanism of Oxygen-Containing Nano-Polycrystalline α-Ti |
REN Junqiang1,2, SHAO Shan1, WANG Qi3, LU Xuefeng1( ), XUE Hongtao1, TANG Fuling1 |
1 State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China 2 State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China 3 School of Energy Engineering, Huanghuai University, Zhumadian 463000, China |
|
Cite this article:
REN Junqiang, SHAO Shan, WANG Qi, LU Xuefeng, XUE Hongtao, TANG Fuling. Molecular Dynamics Simulation of Tensile Mechanical Properties and Deformation Mechanism of Oxygen-Containing Nano-Polycrystalline α-Ti. Acta Metall Sin, 2024, 60(2): 220-230.
|
Abstract Titanium (Ti) has a strong sensitivity to oxygen atoms. Adding interstitial oxygen to pure Ti can greatly alter its mechanical behavior. Oxygen atoms increase strength and hardness while making Ti brittle. Therefore, controlling the oxygen content in Ti is extremely important. To better understand the influence of oxygen on the mechanical behavior of pure Ti, the plastic deformation behavior of nano-polycrystalline α-Ti with different interstitial oxygen content was studied. Molecular dynamic simulations were performed using the second nearest-neighbor modified embedded atom method and the charge equilibration (Qeq) method to investigate the effect of O content, tensile temperature, and strain rate on the tensile mechanical properties and deformation mechanism of nano-polycrystalline α-Ti. Results indicate that the yield stress of nano-polycrystalline α-Ti increases with the increase of interstitial O content. {100}<102> deformation twin was observed when the O content is less than 0.3%, and twin growth was mediated by well-defined “zonal dislocations” at the twin boundary. Different activated slip systems were transformed and diversified when the O content is larger than 0.3%, that is, the prismatic, basal, and pyramidal <c + a> slip systems were simultaneously activated, and the dislocation type changed to edge dislocations. The plastic deformation of nano-polycrystalline α-Ti was mediated by dislocation and grain boundary. In addition, the mobility of the grain boundary increased significantly with the increase of tensile temperature and strain rate. The formation of new grains was accompanied by Tihcp→Tibcc→Tihcp phase transformation, which was due to the relative rotation of the grains. The number of new grains increased with the increase of strain rate. The current work reveals the mechanical properties and deformation mechanism of nano-polycrystalline α-Ti, which promotes the design, and development of Ti-based nano-structured alloys with superior mechanical properties.
|
Received: 04 January 2022
|
|
Fund: National Key Research and Development Program of China(2017YFA0700701);National Natural Science Foundation of China(52061025);National Natural Science Foundation of China(51701189);National Natural Science Foundation of China(51701189);State Key Laboratory for Mechanical Behavior of Materials(20192104);Key Research Program of Education Department of Gansu Province(GSSYLXM-03) |
Corresponding Authors:
LU Xuefeng, professor, Tel: (0931)2976688, E-mail: lxfeng@lut.edu.cn
|
1 |
Tabie V M, Li C, Saifu W, et al. Mechanical properties of near alpha titanium alloys for high-temperature applications—A review [J]. Aircr. Eng. Aerosp. Technol., 2020, 92: 521
|
2 |
Gao P F, Fu M W, Zhan M, et al. Deformation behavior and microstructure evolution of titanium alloys with lamellar microstructure in hot working process: A review [J]. J. Mater. Sci. Technol., 2020, 39: 56
doi: 10.1016/j.jmst.2019.07.052
|
3 |
Dong Y H, Chen I W. Onset criterion for flash sintering [J]. J. Am. Ceram. Soc., 2015, 98: 3624
doi: 10.1111/jace.2015.98.issue-12
|
4 |
Mahata A, Sikdar K. Molecular dynamics simulation of nanometer scale mechanical properties of hexagonal Mg-Li alloy [J]. J. Magnes. Alloy., 2016, 4: 36
|
5 |
Suryanarayana C. Structure and properties of nanocrystalline materials [J]. Bull. Mater. Sci., 1994, 17: 307
doi: 10.1007/BF02745220
|
6 |
Hajizadeh K, Alamdari S G, Eghbali B. Stored energy and recrystallization kinetics of ultrafine grained titanium processed by severe plastic deformation [J]. Physica, 2013, 417B: 33
|
7 |
Huang Q S, Zhu Q, Chen Y B, et al. Twinning-assisted dynamic adjustment of grain boundary mobility [J]. Nat. Commun., 2021, 12: 6695
doi: 10.1038/s41467-021-27002-3
pmid: 34795234
|
8 |
Liu X, Sun W K, Liew K M. Multiscale modeling of crystal plastic deformation of polycrystalline titanium at high temperatures [J]. Comput. Methods Appl. Mech. Eng., 2018, 340: 932
doi: 10.1016/j.cma.2018.06.026
|
9 |
Sotniczuk A, Kuczyńska-Zemła D, Królikowski A, et al. Enhancement of the corrosion resistance and mechanical properties of nanocrystalline titanium by low-temperature annealing [J]. Corros. Sci., 2019, 147: 342
doi: 10.1016/j.corsci.2018.11.016
|
10 |
Ren J Q, Wang Q, Lu X F, et al. Effect of oxygen content on active deformation systems in pure titanium polycrystals [J]. Mater. Sci. Eng., 2018, A731: 530
|
11 |
Conrad H, Okasaki K, Gadgil V, et al. Dislocation structure and the strength of titanium [A]. Electron Microscopy and Structure of Materials [M]. Berkeley: University of California Press, 1972: 438
|
12 |
Shechtman D, Brandon D G. Orientation dependent slip in polycrystalline titanium [J]. J. Mater. Sci., 1973, 8: 1233
doi: 10.1007/BF00549337
|
13 |
Yu Q, Qi L, Tsuru T, et al. Origin of dramatic oxygen solute strengthening effect in titanium [J]. Science, 2015, 347: 635
doi: 10.1126/science.1260485
|
14 |
Voronoi G. Nouvelles applications des paramètres continus à théorie des formes quadratiques. Deuxième Mémoire. Recherches sur les paralléloèdres primitifs [J]. J. Reine Angew. Math., 1909, (136): 67
|
15 |
Lee E, Lee K R, Baskes M I, et al. A modified embedded-atom method interatomic potential for ionic systems: 2NNMEAM + Qeq [J]. Phys. Rev., 2016, 93B: 144110
|
16 |
Rose J H, Smith J R, Guinea F, et al. Universal features of the equation of state of metals [J]. Phys. Rev., 1984, 29B: 2963
|
17 |
Plimpton S. Fast parallel algorithms for short-range molecular dynamics [J]. J. Comput. Phys., 1995, 117: 1
|
18 |
Hirel P. Atomsk: A tool for manipulating and converting atomic data files [J]. Comput. Phys. Commun., 2015, 197: 212
doi: 10.1016/j.cpc.2015.07.012
|
19 |
Stukowski A. Visualization and analysis of atomistic simulation data with OVITO—The Open Visualization Tool [J]. Modell. Simul. Mater. Sci. Eng., 2010, 18: 015012
|
20 |
Li J. AtomEye: An efficient atomistic configuration viewer [J]. Modell. Simul. Mater. Sci. Eng., 2003, 11: 173
doi: 10.1088/0965-0393/11/2/305
|
21 |
Sills R B, Cai W. Solute drag on perfect and extended dislocations [J]. Philos. Mag., 2016, 96: 895
doi: 10.1080/14786435.2016.1142677
|
22 |
Stukowski A, Bulatov V V, Arsenlis A. Automated identification and indexing of dislocations in crystal interfaces [J]. Modell. Simul. Mater. Sci. Eng., 2012, 20: 085007
|
23 |
Ikeda H, Qi Y, Çagin T, et al. Strain rate induced amorphization in metallic nanowires [J]. Phys. Rev. Lett., 1999, 82: 2900
doi: 10.1103/PhysRevLett.82.2900
|
24 |
Wen Y H, Zhu Z Z, Zhu R Z. Molecular dynamics study of the mechanical behavior of nickel nanowire: Strain rate effects [J]. Comput. Mater. Sci., 2008, 41: 553
|
25 |
Tang W H, Zhang J, Wu J Y, et al. Mechanical properties and enhancement mechanisms of titanium-graphene nanocomposites [J]. Acta Mech. Sin., 2020, 36: 855
doi: 10.1007/s10409-020-00968-x
|
26 |
Li B, Ma E. Zonal dislocations mediating $\{10\bar{1}1\}$ $<10\bar{1}\bar{2}>$ twinning in magnesium [J]. Acta. Mater., 2009, 57: 1734
doi: 10.1016/j.actamat.2008.12.016
|
27 |
Ren J Q, Sun Q Y, Xiao L, et al. Atomistic simulation of tension-compression asymmetry and its mechanism in titanium single-crystal nanopillars oriented along the $[11\bar{2}0]$ direction [J]. Comput. Mater. Sci., 2018, 147: 272
doi: 10.1016/j.commatsci.2018.02.029
|
28 |
Sakai T, Fine M E. Plastic deformation of Ti-Al single crystals in prismatic slip [J]. Acta. Metall., 1974, 22: 1359
doi: 10.1016/0001-6160(74)90036-4
|
29 |
Conrad H. Effect of interstitial solutes on the strength and ductility of titanium [J]. Prog. Mater. Sci., 1981, 26: 123
doi: 10.1016/0079-6425(81)90001-3
|
30 |
Wang Y N, Chen S J, Dong X C. Dislocation Theory and Its Application [M]. Beijing: Metallurgical Industry Press, 2007: 101
|
|
王亚男, 陈树江, 董希淳. 位错理论及其应用 [M]. 北京: 冶金工业出版社, 2007: 101
|
31 |
Wang Y B, Li B Q, Sui M L, et al. Deformation-induced grain rotation and growth in nanocrystalline Ni [J]. Appl. Phys. Lett., 2008, 92: 011903
|
32 |
Hasan M S, Lee R, Xu W W. Deformation nanomechanics and dislocation quantification at the atomic scale in nanocrystalline magnesium [J]. J. Magnes. Alloy., 2020, 8: 1296
|
33 |
Ghaffarian H, Taheri A K, Kang K, et al. Molecular dynamics simulation study of the effect of temperature and grain size on the deformation behavior of polycrystalline cementite [J]. Scr. Mater., 2015, 95: 23
doi: 10.1016/j.scriptamat.2014.09.022
|
34 |
Chen P, Wang F X, Li B. Transitory phase transformations during $\{10\bar{1}2\}$ twinning in titanium [J]. Acta Mater., 2019, 171: 65
doi: 10.1016/j.actamat.2019.04.002
|
35 |
Zhang H, Pan A Q, Hei R Y, et al. An atomistic simulation on the tensile and compressive deformation mechanisms of nano-polycrystalline Ti [J]. Appl. Phys., 2021, 127A: 362
|
36 |
Zope R R, Mishin Y. Interatomic potentials for atomistic simulations of the Ti-Al system [J]. Phys. Rev., 2003, 68B: 024102
|
37 |
Mehl M J, Papaconstantopoulos D A. Tight-binding study of high-pressure phase transitions in titanium: Alpha to omega and beyond [J]. Europhys. Lett., 2002, 60: 248
doi: 10.1209/epl/i2002-00356-y
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|