Mechanism of Grain Refinement of Pulse Current Assisted Plasma Arc Welded Al-Mg Alloy
YUAN Tao, ZHAO Xiaohu, JIANG Xiaoqing(), REN Xuelei, LI Boyang
Engineering Research Center of Advanced Manufacturing Technology for Automotive Components, Ministry of Education, Beijing University of Technology, Beijing 100124, China
Cite this article:
YUAN Tao, ZHAO Xiaohu, JIANG Xiaoqing, REN Xuelei, LI Boyang. Mechanism of Grain Refinement of Pulse Current Assisted Plasma Arc Welded Al-Mg Alloy. Acta Metall Sin, 2024, 60(3): 323-332.
During welding, the vibration effect of applying a pulse current on the molten pool can effectively improve weld formation and refine grains. The effect of pulse current on grain refinement and its mechanism were studied for Al-Mg alloy welds fabricated by conventional plasma welding (PAW), PAW with conventional pulse current, and PAW with composite pulse current. The grain size produced by conventional PAW was 78.2 μm, whereas the average grain size was reduced from 78.2 μm to 53.3 μm with increasing conventional pulse current frequency from 0 Hz to 100 Hz; in addition, the degree of grain refinement increased by about 30%. However, the minimum grain size was 48.2 μm, and the grain refinement effect can reach nearly 40% by combining low-frequency pulse current with conventional pulse current. The proportion of small grains and high-angle grain boundaries increased significantly after applying the composite pulse current. The additional oscillation effect of the composite pulse current can effectively eliminate coarse grains during the solidification of the weld pool. The main mechanism of grain refinement is dendrite fragmentation, which is discussed through thermodynamics and composition.
Fund: National Natural Science Foundation of China(51704013);Beijing Municipal Education Commission Fund(KM201810005016);Technology Fund of Beijing University of Technology(ykj-2018-00325)
Fig.1 Welding equipment (a), current waveforms of conventional pulse (b) and composite pulse (c), current acquisition waveforms of conventional pulse (d) and composite pulse (e), and sampling positions (f) (PAW—plasm arc welding)
Sample
No.
Base
current / A
Peak
current / A
First pulse frequency / Hz
First peak time percent / %
Plasma gas
flux / (L·min-1)
Shielding gas
flux / (L·min-1)
C0
180
- -
10
10
S1
90
210
20
75
10
10
S2
90
210
40
75
10
10
S3
90
210
60
75
10
10
S4
90
210
80
75
10
10
S5
90
210
100
75
10
10
Table 1 Experimental design of the conventional plasma pulse current
Sample
No.
Base
current / A
Peak
current / A
First pulse frequency / Hz
Second pulse frequency / Hz
First peak time percent / %
Second peak time percent / %
C0
180
-
-
-
-
D1
90
210
50
2
75
50
D2
90
210
50
4
75
50
D3
90
210
50
6
75
50
D4
90
210
50
8
75
50
D5
90
210
50
10
75
50
Table 2 Experimental design of the plasma composite pulse current
Fig.2 Polarization micrographs of upper surface of conventional pulse current PAW (a) C0 (b) S1 (c) S2 (d) S3 (e) S4 (f) S5
Fig.3 Change of grain size under conventional pulse current PAW
Fig.4 Polarization micrographs of cross-section of conventional pulse current PAW (a) C0 (b) S1 (c) S2 (d) S3 (e) S4 (f) S5
Fig.5 Polarization micrographs of upper surface under composite pulse current PAW (a) C0 (b) D1 (c) D2 (d) D3 (e) D4 (f) D5
Fig.6 Change of grain size under composite pulse current PAW
Fig.7 Grain orientations (a1-c1), grain size distributions (a2-c2), and grain boundary angle distributions (a3-c3) of C0 (a1-a3), S4 (b1-b3), and D4 (c1-c3) samples
Fig.8 Influence of different types of pulse current on grain size and the proportion of large-angle grain boundaries (LAGBs)
Fig.9 Pole figures of C0 (a), S4 (b), and D4 (c) samples (TD—transverse direction, RD—rolling direction)
Fig.10 Influence of temperature gradient and growth rate on the morphology of solidification structure
Fig.11 EDS analysis results of C0 (a), S4 (b), and D4 (c) samples
1
Kruth J P, Levy G, Klocke F, et al. Consolidation phenomena in laser and powder-bed based layered manufacturing [J]. CIRP Annals, 2007, 56: 730
doi: 10.1016/j.cirp.2007.10.004
2
Santos M C, Machado A R, Sales W F, et al. Machining of aluminum alloys: A review [J]. Int. J. Adv. Manuf. Technol., 2016, 86: 3067
doi: 10.1007/s00170-016-8431-9
3
Spierings A B, Dawson K, Heeling T, et al. Microstructural features of Sc- and Zr-modified Al-Mg alloys processed by selective laser melting [J]. Mater. Des., 2017, 115: 52
doi: 10.1016/j.matdes.2016.11.040
4
Croteau J R, Griffiths S, Rossell M D, et al. Microstructure and mechanical properties of Al-Mg-Zr alloys processed by selective laser melting [J]. Acta Mater., 2018, 153: 35
doi: 10.1016/j.actamat.2018.04.053
5
Chakrabarti D J, Laughlin D E. Phase relations and precipitation in Al-Mg-Si alloys with Cu additions [J]. Prog. Mater. Sci., 2004, 49: 389
doi: 10.1016/S0079-6425(03)00031-8
6
Zhang Z Q, He C S, Li Y, et al. Effects of ultrasonic assisted friction stir welding on flow behavior, microstructure and mechanical properties of 7N01-T4 aluminum alloy joints [J]. J. Mater. Sci. Technol., 2020, 43: 1
doi: 10.1016/j.jmst.2019.12.007
7
Dai W L. Effects of high-intensity ultrasonic-wave emission on the weldability of aluminum alloy 7075-T6 [J]. Mater. Lett., 2003, 57: 2447
doi: 10.1016/S0167-577X(02)01262-4
8
Rao S R K, Reddy G M, Kamaraj M, et al. Grain refinement through arc manipulation techniques in Al-Cu alloy GTA welds [J]. Mater. Sci. Eng., 2005, A404: 227
9
Babu N K, Talari M K, Pan D, et al. Microstructural characterization and grain refinement of AA6082 gas tungsten arc welds by scandium modified fillers [J]. Mater. Chem. Phys., 2012, 137: 543
doi: 10.1016/j.matchemphys.2012.09.056
10
Liotti E, Lui A, Vincent R, et al. A synchrotron X-ray radiography study of dendrite fragmentation induced by a pulsed electromagnetic field in an Al-15Cu alloy [J]. Acta Mater., 2014, 70: 228
doi: 10.1016/j.actamat.2014.02.024
11
Yuan T, Kou S, Luo Z. Grain refining by ultrasonic stirring of the weld pool [J]. Acta Mater., 2016, 106: 144
doi: 10.1016/j.actamat.2016.01.016
12
Wang G, Dargusch M S, Qian M, et al. The role of ultrasonic treatment in refining the as-cast grain structure during the solidification of an Al-2Cu alloy [J]. J. Cryst. Growth, 2014, 408: 119
doi: 10.1016/j.jcrysgro.2014.09.018
13
Villaret V, Deschaux-Beaume F, Bordreuil C. A solidification model for the columnar to equiaxed transition in welding of a Cr-Mo ferritic stainless steel with Ti as inoculant [J]. J. Mater. Process. Technol., 2016, 233: 115
doi: 10.1016/j.jmatprotec.2016.02.017
14
Bermingham M J, McDonald S D, Dargusch M S, et al. The mechanism of grain refinement of titanium by silicon [J]. Scr. Mater., 2008, 58: 1050
doi: 10.1016/j.scriptamat.2008.01.041
15
Samanta S K, Mitra S K, Pal T K. Effect of rare earth elements on microstructure and oxidation behaviour in TIG weldments of AISI 316L stainless steel [J]. Mater. Sci. Eng., 2006, A430: 242
16
Chen Z N, Kang H J, Fan G H, et al. Grain refinement of hypoeutectic Al-Si alloys with B [J]. Acta Mater., 2016, 120: 168
doi: 10.1016/j.actamat.2016.08.045
17
Song B, Dong S J, Coddet P, et al. Microstructure and tensile behavior of hybrid nano-micro SiC reinforced iron matrix composites produced by selective laser melting [J]. J. Alloys Compd., 2013, 579: 415
doi: 10.1016/j.jallcom.2013.06.087
18
AlMangour B, Grzesiak D, Yang J M. Selective laser melting of TiB2/H13 steel nanocomposites: influence of hot isostatic pressing post-treatment [J]. J. Mater. Process. Technol., 2017, 244: 344
doi: 10.1016/j.jmatprotec.2017.01.019
19
Xi L X, Gu D D, Guo S, et al. Grain refinement in laser manufactured Al-based composites with TiB2 ceramic [J]. J. Mater. Res. Technol., 2020, 9: 2611
doi: 10.1016/j.jmrt.2020.04.059
20
Wang E Z, Gao T, Nie J F, et al. Grain refinement limit and mechanical properties of 6063 alloy inoculated by Al-Ti-C (B) master alloys [J]. J. Alloys Compd., 2014, 594: 7
doi: 10.1016/j.jallcom.2014.01.145
21
Easton M A, Schiffl A, Yao J, et al. Grain refinement of Mg-Al(-Mn) alloys by SiC additions [J]. Scr. Mater., 2006, 55: 379
doi: 10.1016/j.scriptamat.2006.04.014
22
Kou S, Le Y. Grain structure and solidification cracking in oscillated arc welds of 5052 aluminum alloy [J]. Metall. Trans., 1985, 16A: 1345
23
Yuan T, Luo Z, Kou S. Grain refining of magnesium welds by arc oscillation [J]. Acta Mater., 2016, 116: 166
doi: 10.1016/j.actamat.2016.06.036
24
Jiang Z G, Chen X, Li H, et al. Grain refinement and laser energy distribution during laser oscillating welding of Invar alloy [J]. Mater. Des., 2020, 186: 108195
doi: 10.1016/j.matdes.2019.108195
25
Tseng K H, Chou C P. The effect of pulsed GTA welding on the residual stress of a stainless steel weldment [J]. J. Mater. Process. Technol., 2002, 123: 346
doi: 10.1016/S0924-0136(02)00004-3
26
Balasubramanian V, Ravisankar V, Reddy G M. Effect of pulsed current and post weld aging treatment on tensile properties of argon arc welded high strength aluminium alloy [J]. Mater. Sci. Eng., 2007, A459: 19
27
Balasubramanian V, Ravisankar V, Madhusudhan Reddy G. Influences of pulsed current welding and post weld aging treatment on fatigue crack growth behaviour of AA7075 aluminium alloy joints [J]. Int. J. Fatigue, 2008, 30: 405
doi: 10.1016/j.ijfatigue.2007.04.012
28
Palani P K, Murugan N. Selection of parameters of pulsed current gas metal arc welding [J]. J. Mater. Process. Technol., 2006, 172: 1
doi: 10.1016/j.jmatprotec.2005.07.013
29
Liu A H, Tang X H, Lu F G. Study on welding process and prosperities of AA5754 Al-alloy welded by double pulsed gas metal arc welding [J]. Mater. Des., 2013, 50: 149
doi: 10.1016/j.matdes.2013.02.087
30
Pan J J, Hu S S, Yang L J, et al. Investigation of molten pool behavior and weld bead formation in VP-GTAW by numerical modelling [J]. Mater. Des., 2016, 111: 600
doi: 10.1016/j.matdes.2016.09.022
31
Wang Y P, Qi B J, Cong B Q, et al. Keyhole welding of AA2219 aluminum alloy with double-pulsed variable polarity gas tungsten arc welding [J]. J. Manuf. Process., 2018, 34: 179
doi: 10.1016/j.jmapro.2018.06.006
32
Wang Y P, Cong B Q, Qi B J, et al. Process characteristics and properties of AA2219 aluminum alloy welded by double pulsed VPTIG welding [J]. J. Mater. Process. Technol., 2019, 266: 255
doi: 10.1016/j.jmatprotec.2018.11.015
33
Bosworth M R, Deam R T. Influence of GMAW droplet size on fume formation rate [J]. J. Phys. D: Appl. Phys., 2000, 33: 2605
doi: 10.1088/0022-3727/33/20/313
34
Da Silva C L M, Scotti A. The influence of double pulse on porosity formation in aluminum GMAW [J]. J. Mater. Process. Technol., 2006, 171: 366
doi: 10.1016/j.jmatprotec.2005.07.008
35
Liu A H, Tang X H, Lu F G. Weld pool profile characteristics of Al alloy in double-pulsed GMAW [J]. Int. J. Adv. Manuf. Technol., 2013, 68: 2015
doi: 10.1007/s00170-013-4808-1
36
Yao P, Zhou K, Tang H Q. Effects of operational parameters on the characteristics of ripples in double-pulsed GMAW process [J]. Materials, 2019, 12: 2767
doi: 10.3390/ma12172767
37
Wang L L, Wei H L, Xue J X, et al. A pathway to microstructural refinement through double pulsed gas metal arc welding [J]. Scr. Mater., 2017, 134: 61
doi: 10.1016/j.scriptamat.2017.02.034
38
Wang Y P, Cong B Q, Qi B J, et al. Influence of low-pulsed frequency on arc profile and weld formation characteristics in double-pulsed VPTIG welding of aluminium alloys [J]. J. Manuf. Process., 2020, 58: 1211
doi: 10.1016/j.jmapro.2020.09.025
39
Wang L L, Xue J X. Perspective on double pulsed gas metal arc welding [J]. Appl. Sci., 2017, 7: 894
doi: 10.3390/app7090894
40
Zhang P L, Jia Z Y, Yu Z S, et al. A review on the effect of laser pulse shaping on the microstructure and hot cracking behavior in the welding of alloys [J]. Opt. Laser Technol., 2021, 140: 107094
doi: 10.1016/j.optlastec.2021.107094
41
Wang Y J, Chen M A, Wu C S. HF pulse effect on microstructure and properties of AC TIG butt-welded joint of 6061Al alloy [J]. J. Manuf. Process., 2020, 56: 878
doi: 10.1016/j.jmapro.2020.05.055
42
Wang Z M, Jiang D H, Wu J W, et al. A review on high-frequency pulsed arc welding [J]. J. Manuf. Processes, 2020, 60: 503
doi: 10.1016/j.jmapro.2020.10.054