Please wait a minute...
Acta Metall Sin  2024, Vol. 60 Issue (3): 323-332    DOI: 10.11900/0412.1961.2022.00036
Research paper Current Issue | Archive | Adv Search |
Mechanism of Grain Refinement of Pulse Current Assisted Plasma Arc Welded Al-Mg Alloy
YUAN Tao, ZHAO Xiaohu, JIANG Xiaoqing(), REN Xuelei, LI Boyang
Engineering Research Center of Advanced Manufacturing Technology for Automotive Components, Ministry of Education, Beijing University of Technology, Beijing 100124, China
Cite this article: 

YUAN Tao, ZHAO Xiaohu, JIANG Xiaoqing, REN Xuelei, LI Boyang. Mechanism of Grain Refinement of Pulse Current Assisted Plasma Arc Welded Al-Mg Alloy. Acta Metall Sin, 2024, 60(3): 323-332.

Download:  HTML  PDF(4118KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

During welding, the vibration effect of applying a pulse current on the molten pool can effectively improve weld formation and refine grains. The effect of pulse current on grain refinement and its mechanism were studied for Al-Mg alloy welds fabricated by conventional plasma welding (PAW), PAW with conventional pulse current, and PAW with composite pulse current. The grain size produced by conventional PAW was 78.2 μm, whereas the average grain size was reduced from 78.2 μm to 53.3 μm with increasing conventional pulse current frequency from 0 Hz to 100 Hz; in addition, the degree of grain refinement increased by about 30%. However, the minimum grain size was 48.2 μm, and the grain refinement effect can reach nearly 40% by combining low-frequency pulse current with conventional pulse current. The proportion of small grains and high-angle grain boundaries increased significantly after applying the composite pulse current. The additional oscillation effect of the composite pulse current can effectively eliminate coarse grains during the solidification of the weld pool. The main mechanism of grain refinement is dendrite fragmentation, which is discussed through thermodynamics and composition.

Key words:  PAW      Al-Mg alloy      composite pulse current      grain refinement      dendrite fragmentation     
Received:  25 January 2022     
ZTFLH:  TG47  
Fund: National Natural Science Foundation of China(51704013);Beijing Municipal Education Commission Fund(KM201810005016);Technology Fund of Beijing University of Technology(ykj-2018-00325)
Corresponding Authors:  JIANG Xiaoqing, Tel: 13240290506, E-mail: xqj225@hotmail.com

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2022.00036     OR     https://www.ams.org.cn/EN/Y2024/V60/I3/323

Fig.1  Welding equipment (a), current waveforms of conventional pulse (b) and composite pulse (c), current acquisition waveforms of conventional pulse (d) and composite pulse (e), and sampling positions (f) (PAW—plasm arc welding)

Sample

No.

Base

current / A

Peak

current / A

First pulse frequency / HzFirst peak time percent / %

Plasma gas

flux / (L·min-1)

Shielding gas

flux / (L·min-1)

C0180- -1010
S19021020751010
S29021040751010
S39021060751010
S49021080751010
S590210100751010
Table 1  Experimental design of the conventional plasma pulse current

Sample

No.

Base

current / A

Peak

current / A

First pulse frequency / HzSecond pulse frequency / HzFirst peak time percent / %Second peak time percent / %
C0180----
D1902105027550
D2902105047550
D3902105067550
D4902105087550
D59021050107550
Table 2  Experimental design of the plasma composite pulse current
Fig.2  Polarization micrographs of upper surface of conventional pulse current PAW
(a) C0 (b) S1 (c) S2 (d) S3 (e) S4 (f) S5
Fig.3  Change of grain size under conventional pulse current PAW
Fig.4  Polarization micrographs of cross-section of conventional pulse current PAW
(a) C0 (b) S1 (c) S2 (d) S3 (e) S4 (f) S5
Fig.5  Polarization micrographs of upper surface under composite pulse current PAW
(a) C0 (b) D1 (c) D2 (d) D3 (e) D4 (f) D5
Fig.6  Change of grain size under composite pulse current PAW
Fig.7  Grain orientations (a1-c1), grain size distributions (a2-c2), and grain boundary angle distributions (a3-c3) of C0 (a1-a3), S4 (b1-b3), and D4 (c1-c3) samples
Fig.8  Influence of different types of pulse current on grain size and the proportion of large-angle grain boundaries (LAGBs)
Fig.9  Pole figures of C0 (a), S4 (b), and D4 (c) samples (TD—transverse direction, RD—rolling direction)
Fig.10  Influence of temperature gradient and growth rate on the morphology of solidification structure
Fig.11  EDS analysis results of C0 (a), S4 (b), and D4 (c) samples
1 Kruth J P, Levy G, Klocke F, et al. Consolidation phenomena in laser and powder-bed based layered manufacturing [J]. CIRP Annals, 2007, 56: 730
doi: 10.1016/j.cirp.2007.10.004
2 Santos M C, Machado A R, Sales W F, et al. Machining of aluminum alloys: A review [J]. Int. J. Adv. Manuf. Technol., 2016, 86: 3067
doi: 10.1007/s00170-016-8431-9
3 Spierings A B, Dawson K, Heeling T, et al. Microstructural features of Sc- and Zr-modified Al-Mg alloys processed by selective laser melting [J]. Mater. Des., 2017, 115: 52
doi: 10.1016/j.matdes.2016.11.040
4 Croteau J R, Griffiths S, Rossell M D, et al. Microstructure and mechanical properties of Al-Mg-Zr alloys processed by selective laser melting [J]. Acta Mater., 2018, 153: 35
doi: 10.1016/j.actamat.2018.04.053
5 Chakrabarti D J, Laughlin D E. Phase relations and precipitation in Al-Mg-Si alloys with Cu additions [J]. Prog. Mater. Sci., 2004, 49: 389
doi: 10.1016/S0079-6425(03)00031-8
6 Zhang Z Q, He C S, Li Y, et al. Effects of ultrasonic assisted friction stir welding on flow behavior, microstructure and mechanical properties of 7N01-T4 aluminum alloy joints [J]. J. Mater. Sci. Technol., 2020, 43: 1
doi: 10.1016/j.jmst.2019.12.007
7 Dai W L. Effects of high-intensity ultrasonic-wave emission on the weldability of aluminum alloy 7075-T6 [J]. Mater. Lett., 2003, 57: 2447
doi: 10.1016/S0167-577X(02)01262-4
8 Rao S R K, Reddy G M, Kamaraj M, et al. Grain refinement through arc manipulation techniques in Al-Cu alloy GTA welds [J]. Mater. Sci. Eng., 2005, A404: 227
9 Babu N K, Talari M K, Pan D, et al. Microstructural characterization and grain refinement of AA6082 gas tungsten arc welds by scandium modified fillers [J]. Mater. Chem. Phys., 2012, 137: 543
doi: 10.1016/j.matchemphys.2012.09.056
10 Liotti E, Lui A, Vincent R, et al. A synchrotron X-ray radiography study of dendrite fragmentation induced by a pulsed electromagnetic field in an Al-15Cu alloy [J]. Acta Mater., 2014, 70: 228
doi: 10.1016/j.actamat.2014.02.024
11 Yuan T, Kou S, Luo Z. Grain refining by ultrasonic stirring of the weld pool [J]. Acta Mater., 2016, 106: 144
doi: 10.1016/j.actamat.2016.01.016
12 Wang G, Dargusch M S, Qian M, et al. The role of ultrasonic treatment in refining the as-cast grain structure during the solidification of an Al-2Cu alloy [J]. J. Cryst. Growth, 2014, 408: 119
doi: 10.1016/j.jcrysgro.2014.09.018
13 Villaret V, Deschaux-Beaume F, Bordreuil C. A solidification model for the columnar to equiaxed transition in welding of a Cr-Mo ferritic stainless steel with Ti as inoculant [J]. J. Mater. Process. Technol., 2016, 233: 115
doi: 10.1016/j.jmatprotec.2016.02.017
14 Bermingham M J, McDonald S D, Dargusch M S, et al. The mechanism of grain refinement of titanium by silicon [J]. Scr. Mater., 2008, 58: 1050
doi: 10.1016/j.scriptamat.2008.01.041
15 Samanta S K, Mitra S K, Pal T K. Effect of rare earth elements on microstructure and oxidation behaviour in TIG weldments of AISI 316L stainless steel [J]. Mater. Sci. Eng., 2006, A430: 242
16 Chen Z N, Kang H J, Fan G H, et al. Grain refinement of hypoeutectic Al-Si alloys with B [J]. Acta Mater., 2016, 120: 168
doi: 10.1016/j.actamat.2016.08.045
17 Song B, Dong S J, Coddet P, et al. Microstructure and tensile behavior of hybrid nano-micro SiC reinforced iron matrix composites produced by selective laser melting [J]. J. Alloys Compd., 2013, 579: 415
doi: 10.1016/j.jallcom.2013.06.087
18 AlMangour B, Grzesiak D, Yang J M. Selective laser melting of TiB2/H13 steel nanocomposites: influence of hot isostatic pressing post-treatment [J]. J. Mater. Process. Technol., 2017, 244: 344
doi: 10.1016/j.jmatprotec.2017.01.019
19 Xi L X, Gu D D, Guo S, et al. Grain refinement in laser manufactured Al-based composites with TiB2 ceramic [J]. J. Mater. Res. Technol., 2020, 9: 2611
doi: 10.1016/j.jmrt.2020.04.059
20 Wang E Z, Gao T, Nie J F, et al. Grain refinement limit and mechanical properties of 6063 alloy inoculated by Al-Ti-C (B) master alloys [J]. J. Alloys Compd., 2014, 594: 7
doi: 10.1016/j.jallcom.2014.01.145
21 Easton M A, Schiffl A, Yao J, et al. Grain refinement of Mg-Al(-Mn) alloys by SiC additions [J]. Scr. Mater., 2006, 55: 379
doi: 10.1016/j.scriptamat.2006.04.014
22 Kou S, Le Y. Grain structure and solidification cracking in oscillated arc welds of 5052 aluminum alloy [J]. Metall. Trans., 1985, 16A: 1345
23 Yuan T, Luo Z, Kou S. Grain refining of magnesium welds by arc oscillation [J]. Acta Mater., 2016, 116: 166
doi: 10.1016/j.actamat.2016.06.036
24 Jiang Z G, Chen X, Li H, et al. Grain refinement and laser energy distribution during laser oscillating welding of Invar alloy [J]. Mater. Des., 2020, 186: 108195
doi: 10.1016/j.matdes.2019.108195
25 Tseng K H, Chou C P. The effect of pulsed GTA welding on the residual stress of a stainless steel weldment [J]. J. Mater. Process. Technol., 2002, 123: 346
doi: 10.1016/S0924-0136(02)00004-3
26 Balasubramanian V, Ravisankar V, Reddy G M. Effect of pulsed current and post weld aging treatment on tensile properties of argon arc welded high strength aluminium alloy [J]. Mater. Sci. Eng., 2007, A459: 19
27 Balasubramanian V, Ravisankar V, Madhusudhan Reddy G. Influences of pulsed current welding and post weld aging treatment on fatigue crack growth behaviour of AA7075 aluminium alloy joints [J]. Int. J. Fatigue, 2008, 30: 405
doi: 10.1016/j.ijfatigue.2007.04.012
28 Palani P K, Murugan N. Selection of parameters of pulsed current gas metal arc welding [J]. J. Mater. Process. Technol., 2006, 172: 1
doi: 10.1016/j.jmatprotec.2005.07.013
29 Liu A H, Tang X H, Lu F G. Study on welding process and prosperities of AA5754 Al-alloy welded by double pulsed gas metal arc welding [J]. Mater. Des., 2013, 50: 149
doi: 10.1016/j.matdes.2013.02.087
30 Pan J J, Hu S S, Yang L J, et al. Investigation of molten pool behavior and weld bead formation in VP-GTAW by numerical modelling [J]. Mater. Des., 2016, 111: 600
doi: 10.1016/j.matdes.2016.09.022
31 Wang Y P, Qi B J, Cong B Q, et al. Keyhole welding of AA2219 aluminum alloy with double-pulsed variable polarity gas tungsten arc welding [J]. J. Manuf. Process., 2018, 34: 179
doi: 10.1016/j.jmapro.2018.06.006
32 Wang Y P, Cong B Q, Qi B J, et al. Process characteristics and properties of AA2219 aluminum alloy welded by double pulsed VPTIG welding [J]. J. Mater. Process. Technol., 2019, 266: 255
doi: 10.1016/j.jmatprotec.2018.11.015
33 Bosworth M R, Deam R T. Influence of GMAW droplet size on fume formation rate [J]. J. Phys. D: Appl. Phys., 2000, 33: 2605
doi: 10.1088/0022-3727/33/20/313
34 Da Silva C L M, Scotti A. The influence of double pulse on porosity formation in aluminum GMAW [J]. J. Mater. Process. Technol., 2006, 171: 366
doi: 10.1016/j.jmatprotec.2005.07.008
35 Liu A H, Tang X H, Lu F G. Weld pool profile characteristics of Al alloy in double-pulsed GMAW [J]. Int. J. Adv. Manuf. Technol., 2013, 68: 2015
doi: 10.1007/s00170-013-4808-1
36 Yao P, Zhou K, Tang H Q. Effects of operational parameters on the characteristics of ripples in double-pulsed GMAW process [J]. Materials, 2019, 12: 2767
doi: 10.3390/ma12172767
37 Wang L L, Wei H L, Xue J X, et al. A pathway to microstructural refinement through double pulsed gas metal arc welding [J]. Scr. Mater., 2017, 134: 61
doi: 10.1016/j.scriptamat.2017.02.034
38 Wang Y P, Cong B Q, Qi B J, et al. Influence of low-pulsed frequency on arc profile and weld formation characteristics in double-pulsed VPTIG welding of aluminium alloys [J]. J. Manuf. Process., 2020, 58: 1211
doi: 10.1016/j.jmapro.2020.09.025
39 Wang L L, Xue J X. Perspective on double pulsed gas metal arc welding [J]. Appl. Sci., 2017, 7: 894
doi: 10.3390/app7090894
40 Zhang P L, Jia Z Y, Yu Z S, et al. A review on the effect of laser pulse shaping on the microstructure and hot cracking behavior in the welding of alloys [J]. Opt. Laser Technol., 2021, 140: 107094
doi: 10.1016/j.optlastec.2021.107094
41 Wang Y J, Chen M A, Wu C S. HF pulse effect on microstructure and properties of AC TIG butt-welded joint of 6061Al alloy [J]. J. Manuf. Process., 2020, 56: 878
doi: 10.1016/j.jmapro.2020.05.055
42 Wang Z M, Jiang D H, Wu J W, et al. A review on high-frequency pulsed arc welding [J]. J. Manuf. Processes, 2020, 60: 503
doi: 10.1016/j.jmapro.2020.10.054
[1] LIU Yong, ZENG Gang, LIU Hong, WANG Yu, LI Jianlong. Grain Refinement Mechanism and Research Progress of Magnesium Alloy Incorporating Zr[J]. 金属学报, 2024, 60(2): 129-142.
[2] LI Xiaobing, QIAN Kun, SHU Lei, ZHANG Mengshu, ZHANG Jinhu, CHEN Bo, LIU Kui. Effect of W Content on the Phase Transformation Behavior in Ti-42Al-5Mn- xW Alloy[J]. 金属学报, 2023, 59(10): 1401-1410.
[3] WU Guohua, TONG Xin, JIANG Rui, DING Wenjiang. Grain Refinement of As-Cast Mg-RE Alloys: Research Progress and Future Prospect[J]. 金属学报, 2022, 58(4): 385-399.
[4] LIU Jie, XU Le, SHI Chao, YANG Shaopeng, HE Xiaofei, WANG Maoqiu, SHI Jie. Effect of Rare Earth Ce on Sulfide Characteristics and Microstructure in Non-Quenched and Tempered Steel[J]. 金属学报, 2022, 58(3): 365-374.
[5] DING Ning, WANG Yunfeng, LIU Ke, ZHU Xunming, LI Shubo, DU Wenbo. Microstructure, Texture, and Mechanical Properties of Mg-8Gd-1Er-0.5Zr Alloy by Multi-Directional Forging at High Strain Rate[J]. 金属学报, 2021, 57(8): 1000-1008.
[6] LI Xiucheng,SUN Mingyu,ZHAO Jingxiao,WANG Xuelin,SHANG Chengjia. Quantitative Crystallographic Characterization of Boundaries in Ferrite-Bainite/Martensite Dual-Phase Steels[J]. 金属学报, 2020, 56(4): 653-660.
[7] WU Huajian, CHENG Renshan, LI Jingren, XIE Dongsheng, SONG Kai, PAN Hucheng, QIN Gaowu. Effect of Al Content on Microstructure and Mechanical Properties of Mg-Sn-Ca Alloy[J]. 金属学报, 2020, 56(10): 1423-1432.
[8] ZHANG Jun,JIE Ziqi,HUANG Taiwen,YANG Wenchao,LIU Lin,FU Hengzhi. Research and Development of Equiaxed Grain Solidification and Forming Technology for Nickel-Based Cast Superalloys[J]. 金属学报, 2019, 55(9): 1145-1159.
[9] Liping DENG,Kaixuan CUI,Bingshu WANG,Hongliang XIANG,Qiang LI. Microstructure and Texture Evolution of AZ31 Mg Alloy Processed by Multi-Pass Compressing Under Room Temperature[J]. 金属学报, 2019, 55(8): 976-986.
[10] Shubo LI, Wenbo DU, Xudong WANG, Ke LIU, Zhaohui WANG. Effect of Zr Addition on the Grain Refinement Mechanism of Mg-Gd-Er Alloys[J]. 金属学报, 2018, 54(6): 911-917.
[11] Yizhe MAO, Jianguo LI, Lei FENG. Effect of Coarse β(Al3Mg2) Phase on Microstructure Evolution in 573 K Annealed Al-10Mg Alloy by Uniaxial Compression[J]. 金属学报, 2018, 54(10): 1451-1460.
[12] Lili ZHANG, Hongxiang JIANG, Jiuzhou ZHAO, Lu LI, Qian SUN. A New Understanding Toward Effect of Solute Ti on Grain Refinement of Aluminum by Al-Ti-B Master Alloy: Kinetic Behaviors of TiB2 Particles and Effect of Solute Ti[J]. 金属学报, 2017, 53(9): 1091-1100.
[13] Zhiqiang ZHANG,Limin DONG,Shaoxuan GUAN,Rui YANG. Microstructure and Mechanical Properties of TC16 Titanium Alloy by Room Temperature Roller Die Drawing[J]. 金属学报, 2017, 53(4): 415-422.
[14] Ning LI,Rong ZHANG,Limin ZHANG,Hui XING,Pengfei YIN,Yaoyan WU. Study on Grain Refinement Mechanism of Hypoeutectic Al-7%Si Alloy Under Low Voltage Alternating Current Pulse[J]. 金属学报, 2017, 53(2): 192-200.
[15] Jinrong ZUO,Longgang HOU,Jintao SHI,Hua CUI,Linzhong ZHUANG,Jishan ZHANG. PRECIPITATES AND THE EVOLUTION OF GRAIN STRUCTURES DURING DOUBLE-STEP ROLLING OF HIGH-STRENGTH ALUMINUM ALLOYAND RELATED PROPERTIES[J]. 金属学报, 2016, 52(9): 1105-1114.
No Suggested Reading articles found!