Please wait a minute...
Acta Metall Sin  2024, Vol. 60 Issue (4): 537-547    DOI: 10.11900/0412.1961.2022.00096
Research paper Current Issue | Archive | Adv Search |
Precipitation Strengthening in Titanium Alloys from First Principles Investigation
CHENG Kun1,2, CHEN Shuming1,2, CAO Shuo1, LIU Jianrong1, MA Yingjie1, FAN Qunbo3, CHENG Xingwang3, YANG Rui1, HU Qingmiao1()
1 Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
3 National Key Laboratory of Science and Technology on Materials Under Shock and Impact, School of Materials Science and Technology, Beijing University of Technology, Beijing 100081, China
Cite this article: 

CHENG Kun, CHEN Shuming, CAO Shuo, LIU Jianrong, MA Yingjie, FAN Qunbo, CHENG Xingwang, YANG Rui, HU Qingmiao. Precipitation Strengthening in Titanium Alloys from First Principles Investigation. Acta Metall Sin, 2024, 60(4): 537-547.

Download:  HTML  PDF(1616KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Titanium alloys have shown wide application potential in the areas such as aerospace and marine because of their comprehensive properties, including high specific strength, ductility, corrosion resistance, and damage tolerance. Given the rapid development of new-generation advanced military hardware toward large scale, high-speed, light-weight, and structure-complicated titanium alloys experience increasingly harsh application environments. Thus, developing novel high-strength and high-toughness titanium alloys is an important direction in the field of titanium research. To date, the compositional design of titanium alloys is performed within the framework of some empirical rules without involving strengthening and toughening mechanisms. This kind of approach can hardly achieve an accurate and efficient material design. Based on the abovementioned background, the effect of alloying on the precipitation strengthening of the α + β dual-phase titanium alloy was studied by using the first-principles exact muffin-tin orbital method in combination with a coherent potential approximation. High-strength and high-toughness titanium alloys obtain its high strength through precipitation strengthening in the β-phase matrix with α-phase precipitates. The influence of alloying on the precipitation strengthening is crucial to the understanding and prediction of alloy strength and rational alloy design. In the present work, the elastic moduli and lattice constants of a serial binary titanium alloy Ti-xM (M = Al, V, Cr, Mn, Fe, Co, Ni, Nb, Mo, Ta, W) against the composition x were calculated using the first-principles method. Based on which, the elastic moduli of the titanium alloy with a complex composition (such as Ti-Al-V and Ti55521) were evaluated using the concept of elastic Mo equivalency. Subsequently, the precipitation strengthening of binary titanium alloys and the Ti55521 alloy was evaluated by using the elastic modulus within the framework of the modulus strengthening model. Result shows that alloying elements, such as Co, Fe, W, Mo, Ni, and Mn, have the strongest precipitation strengthening effect for the same particle size and volume fraction of α precipitates, followed by Cr, Nb, and Ta, whereas V is the weakest. The strengthening effect increases with the content of alloying element. For the Ti55521 alloy prepared by using a thermal mechanical process, subsequent short-time aging weakens the precipitation strengthening effect compared with long-time aging.

Key words:  first principles      titanium alloy      elastic modulus      precipitation strengthening      strength     
Received:  07 March 2022     
ZTFLH:  TG139  
Fund: National Natural Science Foundation of China(52071315);National Natural Science Foundation of China(U2106215);National Natural Science Foundation of China(52001307);National Science and Technology Major Project(J2019-VI-0012-0126);China Postdoctoral Science Foundation(2019M661149)
Corresponding Authors:  HU Qingmiao, professor, Tel: (024)23971813, E-mail: qmhu@imr.ac.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2022.00096     OR     https://www.ams.org.cn/EN/Y2024/V60/I4/537

Fig.1  Schematic representation of the spherical precipitation particle distributed homogenously in the matrix (R—radius of precipitate, L—spacing between precipitation phase particles)
PhaseMethoda / nmc / a

α

EMTO0.29331.611
VASP[20]0.29241.595
VASP[21]0.29311.584
VASP[22]0.29461.584
Exp.[23]0.29511.585
βEMTO0.3261-
VASP[20]0.3252-
VASP[22]0.3264-
Exp.[24]0.3281-
Table 1  Lattice parameters (a, c) of the α and β phases of pure Ti in comparison with available values from experimental measurements and other theoretical calculations[20~24]
Fig.2  Lattice parameters of binary Ti-xM (M = Al, V, Cr, Mn, Fe, Co, Ni, Zr, Nb, Mo, Ta, W) against the composition x (atomic fraction)
(a) a of the α phase
(b) c / a of the α phase
(c) a of the β phase
PhaseMethodC11C12C13C33C44C66
αEMTO201.644.254.4222.649.378.7
VASP[20]204.059.177.0192.945.972.5
VASP[21]176.684.577.0190.241.546.1
VASP[22]171.686.672.6190.641.142.5
Exp.[28]176.186.968.3190.550.844.6
Exp.[29]162.492.068.5180.746.635.2
Exp.[30]155.091.079.0173.065.032.0
βEMTO102.2103.6--65.9-
VASP[20]76.6121.9--30.0-
VASP[22]87.8112.2--39.8-
Table 2  Elastic constants of the α and β phases of pure Ti in comparison with available values from experimental measurements and other theoretical calculations[20-22,28-30]
Fig.3  Polycrystalline elastic moduli of the α phase of binary Ti-xM (M = Al, V, Cr, Mn, Fe, Co, Ni, Zr, Nb, Mo, Ta, W) against x
(a) bulk modulus (B)
(b) shear modulus (G)
(c) Young's modulus (Y)
Fig.4  Polycrystalline elastic moduli of the β phase of binary Ti-xM (M = Al, V, Cr, Mn, Fe, Co, Ni, Zr, Nb, Mo, Ta, W) against x
(a) bulk modulus
(b) shear modulus
(c) Young's modulus
Mαβ
mmn
Al0.87 ± 1.2938.84 ± 4.57107.37 ± 18.26
V-116.97 ± 0.42103.95 ± 3.96-142.15 ± 15.85
Cr-254.92 ± 11.39161.50 ± 6.75-255.07 ± 26.99
Mn-279.12 ± 3.47198.59 ± 9.37-270.81 ± 37.46
Fe-225.56 ± 8.13227.59 ± 9.73-288.98 ± 38.94
Co-167.85 ± 8.85240.66 ± 7.59-353.45 ± 30.36
Ni-110.81 ± 5.70216.68 ± 6.73-353.20 ± 26.90
Zr-19.07 ± 0.3538.28 ± 3.52-61.30 ± 14.07
Nb-90.08 ± 0.76148.00 ± 5.10-212.12 ± 20.40
Mo-200.39 ± 1.61207.58 ± 9.16-308.80 ± 36.65
Ta-48.13 ± 1.72145.14 ± 4.63-161.78 ± 18.53
W-162.35 ± 1.68215.07 ± 8.60-239.50 ± 34.42
Table 3  Parameters for the fitting of the shear modulus G and composition x relationship of binary Ti-xM alloy (For the α phase, G-x is fitted with G=62.49+mxx0.15. For the β phase, G-x is fitted with G=18.69+mx+nx2, x0.30. The intercepts in the fitting equations (62.49 GPa and 18.69 GPa) are respectively the shear moduli of the α and β phases of pure Ti)
PhaseAlVCrMnFeCoNiZrNbTaW
α-0.0040.5841.2721.3931.1260.8380.5530.0950.4500.2400.810
β0.1870.5010.7780.9571.0961.1591.0440.1840.7130.6991.036
Table 4  Shear modulus Mo-equivalencies (γM) of various alloying elements in the α and β phases of Ti
Fig.5  Shear moduli of α phase (a) and β phase (b) of Ti-Al-V alloy from direct EMTO-CPA calculations (gray column) and the error of the shear modulus evaluated with modulus Mo-equivalency (cyan column)
Fig.6  Strength increment (Δσ) induced by the modulus strengthening effect as a function of the radius (R) and volume fraction (f) of the precipitation particle in Ti-Mo alloy with β phase composition of 5%Mo
Fig.7  Δσ induced by the precipitation strengthening against x of the β phase of the α + β dual phase Ti-xM alloy (M = V, Cr, Mn, Fe, Co, Ni, Nb, Mo, Ta, W) with R = 100 nm and f = 20%
StatePhaseElement partition / (atomic fraction, %)f / %R / nmG / GPa
TiAlMoVCrFeCal.Mo Eq.
TMPα86.99.21.32.20.30.122 ± 33560.0856.40
β81.28.43.25.21.10.9--34.9735.20
Aged Iα86.511.30.21.50.30.238 ± 622561.9959.20
β75.36.54.88.43.21.8--41.1542.52
Aged IIα86.47120.11.20.20.0350 ± 342562.9660.41
β76.15.84.37.84.51.5--40.9142.23
Table 5  Element partitions, f and R of α phase precipitate[31], and G calculated with the experimental compositions of the α and β phases of Ti55521 alloys under various heat treatments
StateΔσσ0.2 (exp.)
TMP237.8 ± 42.8980 ± 15
Aged I161.1 ± 80.31080 ± 18
Aged II364.3 ± 148.31200 ± 12
Table 6  Calculated strength increment Δσ induced by precipitation strengthening and experimental yield strength (σ0.2) of Ti55521 alloy after various heat treatments
1 Boyer R R. An overview on the use of titanium in the aerospace industry[J]. Mater. Sci. Eng., 1996, A213: 103
2 Lütjering G, Williams J C. Titanium[M]. 2nd Ed., Berlin: Springer, 2007: 431
3 Banerjee D, Williams J C. Perspectives on titanium science and technology[J]. Acta Mater., 2013, 61: 844
doi: 10.1016/j.actamat.2012.10.043
4 Zhang B, Tian D, Song Z M, et al. Research progress in dwell fatigue service reliability of titanium alloys for pressure shell of deep-sea submersible[J]. Acta Metall. Sin., 2023, 59: 713
doi: 10.11900/0412.1961.2022.00441
张 滨, 田 达, 宋竹满 等. 深潜器耐压壳用钛合金保载疲劳服役可靠性研究进展[J]. 金属学报, 2023, 59: 713
5 Yang R, Ma Y J, Lei J F, et al. Toughening high strength titanium alloys through fine tuning phase composition and refining microstructure[J]. Acta Metall. Sin., 2021, 57: 1455
doi: 10.11900/0412.1961.2021.00353
杨 锐, 马英杰, 雷家峰 等. 高强韧钛合金组成相成分和形态的精细调控[J]. 金属学报, 2021, 57: 1455
6 Yan S C. Numerical simulation for the isothermal forging processes of complex structural component of Ti-1023 alloy[D]. Xi'an: Northwestern Polytechnical University, 2005
闫世成. Ti-1023合金复杂结构件等温锻造过程的数值模拟[D]. 西安: 西北工业大学, 2005
7 Ivasishin O M, Markovsky P E, Matviychuk Y V, et al. A comparative study of the mechanical properties of high-strength β-titanium alloys[J]. J. Alloys Compd., 2008, 457: 296
doi: 10.1016/j.jallcom.2007.03.070
8 Coakley J, Vorontsov V A, Jones A G, et al. Precipitation processes in the beta-titanium alloy Ti-5Al-5Mo-5V-3Cr[J]. J. Alloys Compd., 2015, 646: 946
doi: 10.1016/j.jallcom.2015.05.251
9 Kelly P M. Progress report on recent advances in physical metallurgy: (C) The quantitative relationship between microstructure and properties in two-phase alloys[J]. Int. Metall. Rev., 1973, 18: 31
doi: 10.1179/imr.1973.18.1.31
10 Melander A, Persson P Å. The strength of a precipitation hardened AlZnMg alloy[J]. Acta Metall., 1978, 26: 267
doi: 10.1016/0001-6160(78)90127-X
11 Russell K C, Brown L M. A dispersion strengthening model based on differing elastic moduli applied to the iron-copper system[J]. Acta Metall., 1972, 20: 969
doi: 10.1016/0001-6160(72)90091-0
12 Zhang S Z, Cui H, Li M M, et al. First-principles study of phase stability and elastic properties of binary Ti-xTM (TM= V, Cr, Nb, Mo) and ternary Ti-15TM-yAl alloys[J]. Mater. Des., 2016, 110: 80
doi: 10.1016/j.matdes.2016.07.120
13 Benoit M, Tarrat N, Morillo J. Density functional theory investigations of titanium γ-surfaces and stacking faults[J]. Modell. Simul. Mater. Sci. Eng., 2013, 21: 015009
14 Hutchinson C R, Gouné M, Redjaïmia A. Selecting non-isothermal heat treatment schedules for precipitation hardening systems: An example of coupled process-property optimization[J]. Acta Mater., 2007, 55: 213
doi: 10.1016/j.actamat.2006.07.028
15 Vitos L. Computational Quantum Mechanics for Materials Engineers: The EMTO Method and Applications[M]. 2nd Ed., London: Springer, 2007: 14
16 Hill R. The elastic behaviour of a crystalline aggregate[J]. Proc. Phys. Soc., 1952, 65A: 349
17 Martin R M. Electronic Structure: Basic Theory and Practical Methods[M]. New York: Cambridge University Press, 2004: 119
18 Vitos L, Abrikosov I A, Johansson B. Anisotropic lattice distortions in random alloys from first-principles theory[J]. Phys. Rev. Lett., 2001, 87: 156401
doi: 10.1103/PhysRevLett.87.156401
19 Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Phys. Rev. Lett., 1996, 77: 3865
doi: 10.1103/PhysRevLett.77.3865 pmid: 10062328
20 Zhou W C, Sahara R, Tsuchiya K. First-principles study of the phase stability and elastic properties of Ti-X alloys (X = Mo, Nb, Al, Sn, Zr, Fe, Co, and O)[J]. J. Alloys Compd., 2017, 727: 579
doi: 10.1016/j.jallcom.2017.08.128
21 Yu H, Cao S, Youssef S S, et al. Generalized stacking fault energies and critical resolved shear stresses of random α-Ti-Al alloys from first-principles calculations[J]. J. Alloys Compd., 2021, 850: 156314
doi: 10.1016/j.jallcom.2020.156314
22 Ikehata H, Nagasako N, Furuta T, et al. First-principles calculations for development of low elastic modulus Ti alloys[J]. Phys. Rev., 2004, 70B: 174113
23 Barret C S, Massalski T B. Structure of Metals: Crystallographic Methods, Principles and Data[M]. 3rd Ed., New York: Pergamon Press, 1980: 654
24 Lynch J F, Tanaka J. Thermodynamics of the solid solution of hydrogen in β-titanium alloys: β-TiMo and β-Ti/Re[J]. Acta Metall., 1981, 29: 537
doi: 10.1016/0001-6160(81)90077-8
25 Sun K, Yuan X Z, Wu E D, et al. Neutron diffraction study of the deuterides of Ti-Mo alloy[J]. Physica, 2006, 385-386B: 141
26 Denton A R, Ashcroft N W. Vegard's law[J]. Phys. Rev., 1991, 43A: 3161
27 Zhao Y F, Fu Y C, Hu Q M, et al. First-principles investigations of lattice parameters, bulk moduli and phase stabilities of Ti1- x V x and Ti1- x Nb x alloys[J]. Acta Metall. Sin., 2009, 45: 1042
赵宇飞, 符跃春, 胡青苗 等. Ti1- x V x 及Ti1- x Nb x 合金晶格参数、体模量及相稳定性的第一原理研究[J]. 金属学报, 2009, 45: 1042
28 Fisher E S, Renken C J. Single-crystal elastic moduli and the hcp→bcc transformation in Ti, Zr, and Hf[J]. Phys. Rev., 1964, 135: A482
doi: 10.1103/PhysRev.135.A482
29 Simmons G, Wang H. Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook[M]. 2nd Ed., Cambridge: MIT Press, 1971: 323
30 Trinkle D R, Jones M D, Hennig R G, et al. Empirical tight-binding model for titanium phase transformations[J]. Phys. Rev., 2006, 73B: 094123
31 Ahmed M, Li T, Casillas G, et al. The evolution of microstructure and mechanical properties of Ti-5Al-5Mo-5V-2Cr-1Fe during ageing[J]. J. Alloys Compd., 2015, 629: 260
doi: 10.1016/j.jallcom.2015.01.005
[1] YANG Jie, HUANG Sensen, YIN Hui, ZHAI Ruizhi, MA Yingjie, XIANG Wei, LUO Hengjun, LEI Jiafeng, YANG Rui. Inhomogeneity Analyses of Microstructure and Mechanical Properties of TC21 Titanium Alloy Variable Cross-section Die Forgings for Aviation[J]. 金属学报, 2024, 60(3): 333-347.
[2] LI Longjian, LI Rengeng, ZHANG Jiajun, CAO Xinghao, KANG Huijun, WANG Tongmin. Effects of Cryorolling on Properties and Precipitation Behavior of a High-Strength and High-Conductivity Cu-1Cr-0.2Zr-0.25Nb Alloy[J]. 金属学报, 2024, 60(3): 405-416.
[3] SUN Laibo, HUANG Lujun, HUANG Ruisheng, XU Kai, WU Pengbo, LONG Weimin, JIANG Fengchun, FANG Naiwen. Progress in the Effect of Ultrasonic Impact Treatment on Microstructure Improvement and Strengthening Mechanism in Additive Manufacturing[J]. 金属学报, 2024, 60(3): 273-286.
[4] PENG Xiangyang, ZHANG Le, LI Congcong, HOU Shuo, LIU Di, ZHOU Jianming, LU Guangyao, JIANG Suihe. Synergetic Effects of Al and Cr on Enhancing Water Vapor Oxidation Resistance of Ultra-High Strength Steels for Nuclear Applications[J]. 金属学报, 2024, 60(3): 357-366.
[5] WANG Yong, ZHANG Weiwen, YANG Chao, WANG Zhi. Mechanical Properties and Deformation Behavior of a Nanostructured Aluminum Alloy Toughened by Titanium Alloy Base Three-Dimensional Lattice Structure[J]. 金属学报, 2024, 60(2): 247-260.
[6] LIANG Enpu, XU Le, WANG Maoqiu, SHI Jie. Precipitation Behavior of NiAl and Cu in 40CrNi3MoV Steel and Its Effect on Mechanical Properties[J]. 金属学报, 2024, 60(2): 201-210.
[7] LIU Chang, WU Ge, LU Jian. Nanostructural Multi-Principal-Element Alloys: Mechanical Properties and Toughening Mechanisms[J]. 金属学报, 2024, 60(1): 16-29.
[8] FENG Qiang, LU Song, LI Wendao, ZHANG Xiaorui, LI Longfei, ZOU Min, ZHUANG Xiaoli. Recent Progress in Alloy Design and Creep Mechanism of γ'-Strengthened Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1125-1143.
[9] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[10] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[11] ZHAO Pingping, SONG Yingwei, DONG Kaihui, HAN En-Hou. Synergistic Effect Mechanism of Different Ions on the Electrochemical Corrosion Behavior of TC4 Titanium Alloy[J]. 金属学报, 2023, 59(7): 939-946.
[12] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[13] LIANG Kai, YAO Zhihao, XIE Xishan, YAO Kaijun, DONG Jianxin. Correlation Between Microstructure and Properties of New Heat-Resistant Alloy SP2215[J]. 金属学报, 2023, 59(6): 797-811.
[14] ZHANG Bin, TIAN Da, SONG Zhuman, ZHANG Guangping. Research Progress in Dwell Fatigue Service Reliability of Titanium Alloys for Pressure Shell of Deep-Sea Submersible[J]. 金属学报, 2023, 59(6): 713-726.
[15] LIU Junpeng, CHEN Hao, ZHANG Chi, YANG Zhigang, ZHANG Yong, DAI Lanhong. Progress of Cryogenic Deformation and Strengthening-Toughening Mechanisms of High-Entropy Alloys[J]. 金属学报, 2023, 59(6): 727-743.
No Suggested Reading articles found!