Please wait a minute...
Acta Metall Sin  2022, Vol. 58 Issue (5): 610-622    DOI: 10.11900/0412.1961.2021.00200
Research paper Current Issue | Archive | Adv Search |
Effect of Ti on the Corrosion Behavior of Fe22Cr5Al3Mo Alloy in 500oC Superheated Steam
SUN Rongrong1, YAO Meiyi1(), LIN Xiaodong1(), ZHANG Wenhuai1, QIU Yunlong2, HU Lijuan1, XIE Yaoping1, YANG Jian3, DONG Jianxin4, CHENG Guoguang5
1.Institute of Materials, Shanghai University, Shanghai 200072, China
2.Zhongxing Energy Equipment Co., Ltd., Haimen 226126, China
3.State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
4.School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
5.State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, China
Cite this article: 

SUN Rongrong, YAO Meiyi, LIN Xiaodong, ZHANG Wenhuai, QIU Yunlong, HU Lijuan, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. Effect of Ti on the Corrosion Behavior of Fe22Cr5Al3Mo Alloy in 500oC Superheated Steam. Acta Metall Sin, 2022, 58(5): 610-622.

Download:  HTML  PDF(5670KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Zirconium alloys can react with water to produce hydrogen under a loss of coolant accident, which can lead to a hydrogen explosion. Therefore, the idea of developing accident tolerant fuel (ATF) is proposed, which involves nuclear fuel and cladding. FeCrAl alloy is a promising candidate material for ATF cladding. Studying the effects of alloying elements on the corrosion behavior and mechanism of FeCrAl alloy can provide a theoretical basis and guidance for optimizing its composition. Therefore, in this study, the effect of Ti on the corrosion behavior of Fe22Cr5Al3Mo alloy in 500oC superheated steam was investigated. Three types of Fe22Cr5Al3Mo-xTi (x = 0, 0.5, 1.0, mass fraction, %) alloys, designated as 0Ti, 0.5Ti, and 1.0Ti alloys, respectively, were fabricated and corroded in 500oC and 10.3 MPa superheated steam using a static autoclave. The microstructure, crystal structure and composition of the samples before and after corrosion were observed using XRD, OM, FIB/SEM, EDS, and TEM. The results show that the oxide films formed on the Fe22Cr5Al3Mo-xTi alloys in 500oC and 10.3 MPa superheated steam present a trilayer structure consisting of an outer oxide layer of Fe2O3, a middle layer of hcp-Cr2O3, and an inner layer of Al2O3. There is α-(Fe, Cr) in the Al2O3 layer near the oxide/metal interface. The ratio, R, of Cr oxide film thickness to total oxide film thickness for 0Ti, 0.5Ti, and 1.0Ti alloys follows the order R0.5Ti > R1.0Ti > R0Ti, which may explain the better corrosion resistance of 0.5Ti alloy than 1.0Ti and 0Ti alloys. The addition of Ti can reduce the total thickness of the oxide films and improve the corrosion resistance of the alloys by increasing the thickness of the protective hcp-Cr2O3 film and inhibiting the precipitation of Cr23C6.

Key words:  FeCrAl alloy      Ti      corrosion      oxide film      microstructure     
Received:  12 May 2021     
ZTFLH:  TG142.1  
Fund: National Natural Science Foundation of China(51871141)
About author:  YAO Meiyi, professor, Tel: 17721378029, E-mail: yaomeiyi@shu.edu.cnLIN Xiaodong, Tel: 18609825539, E-mail: xdlin@shu.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2021.00200     OR     https://www.ams.org.cn/EN/Y2022/V58/I5/610

AlloyCrAlMoTiCNFe
0Ti22.905.253.64-0.00580.0089Bal.
0.5Ti21.345.043.140.450.00640.0043Bal.
1.0Ti21.994.593.440.980.00760.0045Bal.
Table 1  Compositions of alloys used in the present work
Fig.1  OM images of 0Ti (a), 0.5Ti (b), and 1.0Ti (c) alloys
Fig.2  XRD spectra of 0Ti, 0.5Ti, and 1.0Ti alloys
AlloyCrystal plane index (hkl)a¯ / nm
(110)(200)(211)
2θ / (°)d / nm2θ / (°)d / nm2θ / (°)d / nm
α-Fe44.670.2026865.020.1433282.330.117020.28664
0Ti44.150.2049564.240.1448781.450.118070.28960
0.5Ti44.180.2048264.240.1448781.420.118100.28956
1.0Ti44.280.2043964.360.1446381.420.118100.28920
Table 2  XRD characteristic peak parameters (the diffraction half angle of θ, the interplanar crystal spacing of d) and average lattice constant (a¯) of α-Fe, 0Ti, 0.5Ti, and 1.0Ti alloys
Fig.3  TEM images (a1-a6) and SAED patterns of P1-P6 (b1-b6) of typical second phase particles in 0Ti (a1, a2), 0.5Ti (a3, a4), and 1.0Ti (a5, a6) alloys (fcc—face centered cubic, o—orthorhombic, hcp—hexagonal close packed, c—primitive cubic, mc—base centered monoclinic)
Alloyfcc-Cr23C6o-Cr3C2o-Fe3Chcp-Fe2Tic-(Fe, Cr)mc-Al8Mo3fcc-TiN
0Ti100-200100300----
0.5Ti-100-20080100-150150150350
1.0Ti-70-12050-100-120250-400240
Table 3  Statistics of size for typical second phase particles in 0Ti, 0.5Ti, and 1.0Ti alloys
Fig.4  EDS mappings of TiN in the matrix of 0.5Ti (a) and 1.0Ti (b) alloys corroded in 500oC and 10.3 MPa superheated steam for 1000 h
Fig.5  SEM images of surface morphologies of oxide films formed on 0Ti (a1[24]-a3), 0.5Ti (b1-b3), and 1.0Ti (c1-c3) alloys corroded in 500oC and 10.3 MPa superheated steam for 3 h (a1[24]-c1), 500 h (a2-c2), and 1000 h (a3-c3)
Fig.6  HAADF images of the cross-sectional oxide films formed on the 0Ti (a1[24], a2[24], a3), 0.5Ti (b1-b3), and 1.0Ti (c1-c3) alloys corroded in 500oC and 10.3 MPa superheated steam for 3 h (a1[24]-c1), 500 h (a2[24]-c2), and 1000 h (a3-c3)
Alloy3 h500 h1000 h
0Ti250 ± 100600 ± 30720 ± 50
0.5Ti60 ± 25180 ± 85330 ± 80
1.0Ti60 ± 20230 ± 65370 ± 50
Table 4  Average thicknesses of oxide films formed on the 0Ti, 0.5Ti, and 1.0Ti alloys corroded in 500oC and 10.3 MPa superheated steam for 3 h, 500 h, and 1000 h
Fig.7  HAADF image and EDS mappings of cross-sectional oxide film formed on 0.5Ti alloy corroded in 500oC and 10.3 MPa superheated steam for 1000 h
Fig.8  TEM images and SAED patterns of different areas (insets) in the cross-sectional oxide films formed on 0Ti (a), 0.5Ti (b-f), and 1.0Ti (g) alloys corroded in 500oC and 10.3 MPa superheated steam for 500 h (a-c, g) and 1000 h (d-f) (m—monoclinic, bcc—body centered cubic)
AlloyOxide position3 h500 h1000 h
0TiOhcp-Fe2O3hcp-Fe2O3hcp-Fe2O3
M--hcp-Cr2O3
I-m-Al2O3-
0.5TiOhcp-Fe2O3hcp-Fe2O3hcp-Fe2O3
Mhcp-Cr2O3hcp-Cr2O3hcp-Cr2O3
Ihcp-Al2O3o-Al2O3o-Al2O3
1.0TiO--hcp-Fe2O3
Mhcp-Cr2O3hcp-Cr2O3hcp-Cr2O3
I-hcp-Al2O3hcp-Al2O3
Table 5  Crystal structures of oxide films formed on 0Ti, 0.5Ti, and 1.0Ti alloys corroded in 500oC and 10.3 MPa super-heated steam for 3 h, 500 h, and 1000 h
Fig.9  Schematics of corrosion process of FeCrAl alloys in 500oC and 10.3 MPa superheated steam
(a) Fe2O3 is preferentially formed on the thin original mixed layer of oxides
(b) the mixed oxide region of Cr and Al is formed
(c) Cr2O3 formed at the interface between Fe2O3 and the mixed oxide region of Cr and Al, while the Al2O3 formed at the O/M interface
(d) unoxidized Fe and Cr near O/M interface exist in the form of α-(Fe, Cr)
AlloyIron oxideChromium oxideAluminum oxideOverlap area
0Ti2204080260
0.5Ti60653223
1.0Ti80656025
Table 6  Average thicknesses of iron oxide film, chromium oxide film, aluminum oxide film, and overlap area formed on the 0Ti, 0.5Ti, and 1.0Ti alloys corroded in 500oC and 10.3 MPa superheated steam for 500 h
Time / h0Ti0.5Ti1.0Ti
3~00.1330.083
5000.0670.3610.283
10000.090.3480.176
Table 7  Ratios of chromium oxide film thickness to total oxide film thickness for the 0Ti, 0.5Ti, and 1.0Ti alloys corroded in 500oC and 10.3 MPa super-heated steam for 3 h, 500 h, and 1000 h
1 Zinkle S J, Terrani K A, Gehin J C, et al. Accident tolerant fuels for LWRs: A perspective [J]. J. Nucl. Mater., 2014, 448: 374
doi: 10.1016/j.jnucmat.2013.12.005
2 Little E A, Stow D A. Void-swelling in irons and ferritic steels: II. An experimental survey of materials irradiated in a fast reactor [J]. J. Nucl. Mater., 1979, 87: 25
doi: 10.1016/0022-3115(79)90123-5
3 Lim J, Hwang I S, Kim J H. Design of alumina forming FeCrAl steels for lead or lead-bismuth cooled fast reactors [J]. J. Nucl. Mater., 2013, 441: 650
doi: 10.1016/j.jnucmat.2012.04.006
4 Pint B A, Terrani K A, Yamamoto Y, et al. Material selection for accident tolerant fuel cladding [J]. Metall. Mater. Trans., 2015, 2: 190
5 Lim J, Nam H O, Hwang I S, et al. A study of early corrosion behaviors of FeCrAl alloys in liquid lead-bismuth eutectic environments [J]. J. Nucl. Mater., 2010, 407: 205
doi: 10.1016/j.jnucmat.2010.10.018
6 Engkvist J, Bexell U, Grehk M, et al. High temperature oxidation of FeCrAl-alloys-influence of Al-concentration on oxide layer characteristics [J]. Mater. Corros., 2009, 60: 876
7 Pint B A, Unocic K A, Terrani K A. Effect of steam on high temperature oxidation behaviour of alumina-forming alloys [J]. Mater. High Temp., 2015, 32: 28
doi: 10.1179/0960340914Z.00000000058
8 Kögler R, Anwand W, Richter A, et al. Nanocavity formation and hardness increase by dual ion beam irradiation of oxide dispersion strengthened FeCrAl alloy [J]. J. Nucl. Mater., 2012, 427: 133
doi: 10.1016/j.jnucmat.2012.04.029
9 Sun Z Q, Bei H B, Yamamoto Y. Microstructural control of FeCrAl alloys using Mo and Nb additions [J]. Mater. Charact., 2017, 132: 126
doi: 10.1016/j.matchar.2017.08.008
10 Dolley E J, Schuster M, Crawford C, et al. Mechanical behavior of FeCrAl and other alloys following exposure to LOCA conditions plus quenching [A]. Proceedings of the 18th International Conference on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors [C]. Switzerland: Springer International Publishing, 2018: 185
11 Park D J, Kim H G, Park J Y, et al. A study of the oxidation of FeCrAl alloy in pressurized water and high-temperature steam environment [J]. Corros. Sci., 2015, 94: 459
doi: 10.1016/j.corsci.2015.02.027
12 Badini C, Laurella F. Oxidation of FeCrAl alloy: Influence of temperature and atmosphere on scale growth rate and mechanism [J]. Surf. Coat. Technol., 2001, 135: 291
doi: 10.1016/S0257-8972(00)00989-0
13 Rebak R B. Versatile oxide films protect FeCrAl alloys under normal operation and accident conditions in light water power reactors [J]. JOM, 2018, 70: 176
doi: 10.1007/s11837-017-2705-z
14 Chu R. Studies on high-temperature oxidation and its influence mechanism of Fe-Cr-Al alloy [D]. Shenyang: Shenyang Normal University, 2013
褚 冉. Fe-Cr-Al合金高温氧化及影响机理研究 [D]. 沈阳: 沈阳师范大学, 2013
15 Herbelin J M, Mantel M, Cogne J Y. Future trends of FeCrAl alloys for automative catalytic converters to reach mass production [Z]. Germany: Werkstoff-Informationsgesellschaft mbH, Frankfurt am Main, 1997: 79
16 Ning F Q, Wang X, Yang Y, et al. Uniform corrosion behavior of FeCrAl alloys in borated and lithiated high temperature water [J]. J. Mater. Sci. Technol., 2021, 70: 136
doi: 10.1016/j.jmst.2020.07.026
17 Kitajima Y, Hayashi S, Ukai S, et al. The effect of additional elements on oxide scale evolution of Fe-20at.%Cr-10at.%Al alloy at 900℃ in air [J]. Mater. Sci. Forum., 2008, 595-598: 1013
doi: 10.4028/www.scientific.net/MSF.595-598.1013
18 Huang T H, Naumenko D, Song P, et al. Effect of titanium addition on alumina growth mechanism on yttria-containing FeCrAl-base alloy [J]. Oxid. Met., 2018, 90: 671
doi: 10.1007/s11085-018-9861-6
19 Schutze M. Lifetime Modelling of High Temperature Corrosion Processes EFC 34 [M]. Boca Raton, FL, USA: CRC Press, 2001: 66
20 Dang J, Zhou P, Shi H Y. Influence of Nb/Ti on corrosion resistance properties of low chromium ferritic stainless steels [J]. Iron Steel Van Tit, 2020, 41: 147
党 杰, 周 鹏, 史洪源. Nb、Ti对低铬铁素体不锈钢腐蚀性能的影响 [J]. 钢铁钒钛, 2020, 41: 147
21 Li X, Lu X L, Bi H Y. Effect of Nb, Ti on the properties of 15Cr ferritic stainless steel [A]. Proceedings of the 8th (2011) China Iron and Steel Annual Meeting [C]. Beijing: Metallurgical Industry Press, 2011: 535
李 鑫, 陆晓莉, 毕洪运. Nb、Ti对15Cr铁素体不锈钢性能的影响 [A]. 第八届(2011)中国钢铁年会论文集 [C]. 北京: 冶金工业出版社, 2011: 535
22 Zhang X, Sun Q S, Du W. Effect of Nb, Ti on structure and property of ultra-low carbon and nitrogen ferritic stainless steel [A]. Proceedings of the 4th Annual Youth Academic Conference of China Society of Metals [C]. Beijing: Iron & Steel, 2008: 138
张 鑫, 孙全社, 杜 伟. Nb、Ti对超低碳氮430铁素体不锈钢组织和性能的影响 [A]. 第4届中国金属学会青年学术年会论文集 [C]. 北京: 钢铁, 2008: 138
23 Yu Y N. Fundamentals of Materials Science [M]. Beijing: Higher Education Press, 2006: 781
余永宁. 材料科学基础 [M]. 北京: 高等教育出版社, 2006: 781
24 Qian Y, Sun R R, Zhang W H, et al. Effect of Nb on microstructure and corrosion resistance of Fe22Cr5Al3Mo alloy [J]. Acta Metall. Sin., 2020, 56: 321
钱 月, 孙蓉蓉, 张文怀 等. Nb对Fe22Cr5Al3Mo合金显微组织和耐腐蚀性能的影响 [J]. 金属学报, 2020, 56: 321
25 Li N, Parker S S, Wood E S, et al. Oxide morphology of a FeCrAl alloy, Kanthal APMT, following extended aging in air at 300oC to 600oC [J]. Metall. Mater. Trans., 2018, 49A: 2940
26 Li N, Parker S S, Saleh T A, et al. Intermediate temperature corrosion behaviour of Fe-12Cr-6Al-2Mo-0.2Si-0.03Y alloy (C26M) at 300-600oC [J]. Corros. Sci., 2019, 157: 274
doi: 10.1016/j.corsci.2019.05.029
27 Dai J X, Gong Z M, Xu S T, et al. In situ study on the initial oxidation behavior of zirconium alloys with near-ambient pressure XPS [J]. Acta Phys. Chim. Sin., 2020, 36: 2003026
戴久翔, 龚忠苗, 徐诗彤 等. 锆合金初始氧化行为的原位近常压XPS研究 [J]. 物理化学学报, 2020, 36: 2003026
28 Pan D, Zhang R Q, Wang H J, et al. In steam short-time oxidation kinetics of FeCrAl alloys [J]. J. Mater. Eng. Perform., 2018, 27: 6407
doi: 10.1007/s11665-018-3665-3
29 Zhang Z G, Niu Y, Zhang X J. Effect of third element Cr in Fe-Cr-Al alloys [J]. J. Iron Steel Res., 2007, 19: 46
张志刚, 牛 焱, 张学军. 铁-铬-铝合金中铬的第三组元作用 [J]. 钢铁研究学报, 2007, 19: 46
30 Terrani K A, Pint B A, Kim Y J, et al. Uniform corrosion of FeCrAl alloys in LWR coolant environments [J]. J. Nucl. Mater., 2016, 479: 36
doi: 10.1016/j.jnucmat.2016.06.047
31 Pint B A, Terrani K A, Rebak R B. Steam oxidation behavior of FeCrAl cladding [A]. Proceedings of the 18th International Conference on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors [C]. Switzerland: Springer International Publishing, 2018: 235
[1] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[3] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[4] CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1209-1220.
[5] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[6] DU Jinhui, BI Zhongnan, QU Jinglong. Recent Development of Triple Melt GH4169 Alloy[J]. 金属学报, 2023, 59(9): 1159-1172.
[7] LI Jiarong, DONG Jianmin, HAN Mei, LIU Shizhong. Effects of Sand Blasting on Surface Integrity and High Cycle Fatigue Properties of DD6 Single Crystal Superalloy[J]. 金属学报, 2023, 59(9): 1201-1208.
[8] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[9] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[10] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[11] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[12] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[13] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[14] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[15] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
No Suggested Reading articles found!