Please wait a minute...
Acta Metall Sin  2022, Vol. 58 Issue (6): 807-815    DOI: 10.11900/0412.1961.2021.00195
Research paper Current Issue | Archive | Adv Search |
Plastic Rheological Behaviors of Zr61Cu25Al12Ti2 and Zr52.5Cu17.9Ni14.6Al10Ti5 Amorphous Alloys in the Supercooled Liquid Region
LIU Shuaishuai, HOU Chaonan, WANG Engang, JIA Peng()
Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), School of Metallurgy, Northeastern University, Shenyang 110819, China
Cite this article: 

LIU Shuaishuai, HOU Chaonan, WANG Engang, JIA Peng. Plastic Rheological Behaviors of Zr61Cu25Al12Ti2 and Zr52.5Cu17.9Ni14.6Al10Ti5 Amorphous Alloys in the Supercooled Liquid Region. Acta Metall Sin, 2022, 58(6): 807-815.

Download:  HTML  PDF(1861KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The plastic deformation of amorphous alloys at room temperature is limited to small shear band zones and minimal strain. However, amorphous alloys in the supercooled liquid region exhibit superplasticity and have high forming ability. Zr61Cu25Al12Ti2 (ZT1) and Zr52.5Cu17.9Ni14.6Al10Ti5 (Vit105) amorphous alloys have excellent forming ability and similar mechanical properties at room temperature or low temperature. They have broad application prospects as flexible components, but little work has been conducted on the superplasticity of ZT1. This work examined the rheological behavior of the supercooled liquid of two amorphous alloys to provide a theoretical basis for microplastic deformation. ZT1 and Vit105 amorphous alloys were prepared by copper mold suction casting. The high-temperature rheological behaviors of the two amorphous alloys were investigated using Gleeble3500. Variations in temperature and strain rate influence the steady-state stress obviously in the supercooled liquid region. Theological transformation behaviors of the different Zr-based amorphous alloys were analyzed based on the viscous flow model. The plastic deformation in the supercooled liquid region included brittle fracture caused by local shear in low-temperature range or at a high strain rate, non-Newtonian rheology at high strain rates in the middle-temperature range, and Newtonian rheology at low strain rates in the high-temperature range. In the plastic deformation process at a low strain rate, nanocrystals are formed inside the amorphous alloy due to the combined actions of thermal and stress driving forces. With a compressive rate less than 1 × 10-3 s-1, ZT1 and Vit105 exhibited Newtonian flow over the temperature ranges of 678-703 K and 703-738 K, respectively. According to the free volume model, the calculated activation volumes for ZT1 and Vit105 were 0.137-0.590 nm3 and 0.123-0.234 nm3, respectively. The much smaller activation volume in Newtonian flow was associated with the higher diffusibility and atomistic mobility of the free volume in the material. The Vit105 amorphous alloy showed higher stability and glass formability, which is more convenient for thermoplastic processing, due to the combination of a high glass transition temperature and fragility parameter.

Key words:  amorphous alloy      supercooled liquid region      Newtonian rheology      fragility parameter     
Received:  07 May 2021     
ZTFLH:  TG139.8  
Fund: National Natural Science Foundation of China(51674082)
About author:  JIA Peng, associate professor, Tel: (024)83681758, E-mail: pjia@epm.neu.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2021.00195     OR     https://www.ams.org.cn/EN/Y2022/V58/I6/807

Fig.1  XRD spectra (a) and DSC curves (b) of Zr61Cu25Al12Ti2 (ZT1) and Zr52.5Cu17.9Ni14.6Al10Ti5 (Vit105) amorphous alloys (Tg and Tx are the glass transition temperature and crystallization temperature, respectively)
Fig.2  True stress-strain curves of ZT1 (a) and Vit105 (b) amorphous alloys at different temperatures with constant strain rate of 1 × 10-3 s-1
Fig.3  XRD spectra of ZT1 amorphous alloy at 688 and 693 K, and Vit105 amorphous alloy at 723 K after thermoplastic compressive deformation with constant strain rate of 1 × 10-3 s-1
Fig.4  True stress-true strain curves of ZT1 (at 663 K) (a) and Vit105 (at 683 K) (b) amorphous alloys with different strain rates
Fig.5  Steady-state stresses of ZT1 (a) and Vit105 (b) amorphous alloys as a function of strain rate at different temperatures
Fig.6  Variation relationships of the flow stress with the applied strain rate in ZT1 (a) and Vit105 (b) amorphous alloys at different temperatures (The solid lines are deduced from Eq.(1))
Fig.7  Viscosity change curves of ZT1 (a) and Vit105 (b) amorphous alloys
Fig.8  Boundaries between Newtonian flow to non-Newtonian flow for ZT1 and Vit105 amorphous alloys (T—experimental temperature)
Fig.9  Deformation maps of ZT1 (a) and Vit105 (b) amorphous alloys in the supercooled liquid region
Fig.10  Dependence of viscosity in the temperature in the supercooled liquid region of amorphous alloys (The fitting curves are deduced from Eq.(3). ηVFT—pre-exponential factor, D*—fragility parameter, T0—VFT temperature)
Fig.11  Angell diagram of the Newtonian viscosity of ZT1 and Vit105 amorphous alloys, where the temperatures are normalized by Tg* (Dc is the experimentally observed glass forming ability of the alloy expressed in terms of the maximum reported diameter of a rod, dmax (in mm); Tg* is the temperature in the MGs at which the equilibrium viscosity was determined to have a value of 1012 Pa·s; the dash lines are deduced from Eq.(3))
1 Inoue A. High strength bulk amorphous alloys with low critical cooling rates (overview) [J]. Mater. Trans. JIM, 1995, 36: 866
2 Jin C R, Yang S Y, Deng X Y, et al. Effect of nano-crystallization on dynamic compressive property of Zr-based amorphous alloy [J]. Acta Metall. Sin., 2019, 55: 1561
金辰日, 杨素媛, 邓学元 等. 纳米晶化对锆基非晶合金动态压缩性能的影响 [J]. 金属学报, 2019, 55: 1561
doi: 10.11900/0412.1961.2019.00207
3 Wang W H. The nature and properties of amorphous matter [J]. Prog. Phys., 2013, 33: 177
汪卫华. 非晶态物质的本质和特性 [J]. 物理学进展, 2013, 33: 177
4 Telford M. The case for bulk metallic glass [J]. Mater. Today, 2004, 7: 36
5 Khan M M, Nemati A, Ur Rahman Z, et al. Recent advancements in bulk metallic glasses and their applications: A review [J]. Crit. Rev. Solid State Mater. Sci., 2018, 43: 233
doi: 10.1080/10408436.2017.1358149
6 Spaepen F. A microscopic mechanism for steady state inhomogeneous flow in metallic glasses [J]. Acta Metall., 1976, 25: 407
doi: 10.1016/0001-6160(77)90232-2
7 Argon A. Plastic deformation in metallic glasses [J]. Acta Metall., 1979, 27: 47
doi: 10.1016/0001-6160(79)90055-5
8 Heggen M, Spaepen F, Feuerbacher M. Creation and annihilation of free volume during homogeneous flow of a metallic glass [J]. J. Appl. Phys., 2005, 97: 033506
9 Zhang Z F, Qu R T, Liu Z Q. Advances in fracture behavior and strength theory of metallic glasses [J]. Acta Metall. Sin., 2016, 52: 1171
张哲峰, 屈瑞涛, 刘增乾. 金属玻璃的断裂行为与强度理论研究进展 [J]. 金属学报, 2016, 52: 1171
10 Shen J, Wang G, Sun J F, et al. Superplastic flow behavior of Zr base bulk metallic glass in supercooled liquid region [J]. Acta Metall. Sin., 2004, 40: 518
沈 军, 王 刚, 孙剑飞 等. Zr基块体非晶合金在过冷液相区的超塑性流变行为 [J]. 金属学报, 2004, 40: 518
11 Lee K S, Bang W K, Ha T K, et al. Study on the high-temperature deformation behavior and formability of Zr-based bulk metallic glass [J]. J. Metastable Nanocryst. Mater., 2003, 15-16: 155
12 Zhang Z H, Zhou C, Xie J X. Superplastic extrusion behaviors of Zr55Al10Ni5Cu30 bulk metallic glass [J]. Chin. J. Nonferrous Met., 2005, 15: 33
张志豪, 周 成, 谢建新. Zr55Al10Ni5Cu30大块非晶合金的超塑性挤压成形性能 [J]. 中国有色金属学报, 2005, 15: 33
13 Xu W L, Li W B, Chen S B, et al. Superplastic diffusion bonding of metallic glasses by rapid heating [J]. Intermetallics, 2018, 98: 143
doi: 10.1016/j.intermet.2018.05.001
14 Chen W, Liu Z, Schroers J. Joining of bulk metallic glasses in air [J]. Acta Mater., 2014, 62: 49
doi: 10.1016/j.actamat.2013.08.053
15 Nishiyama N, Amiya K, Inoue A. Bulk metallic glasses for industrial products [J]. Mater. Trans., 2004, 45: 1245
doi: 10.2320/matertrans.45.1245
16 Liu Z, Schroers J. General nanomoulding with bulk metallic glasses [J]. Nanotechnology, 2015, 26: 145301
doi: 10.1088/0957-4484/26/14/145301
17 Cohen M H, Turnbull D. Molecular transport in liquids and glasses [J]. J. Chem. Phys., 1959, 31: 1164
doi: 10.1063/1.1730566
18 Inoue A, Zhang T, Nishiyama N, et al. Preparation of 16 mm diameter rod of amorphous Zr65Al7.5Ni10Cu17.5 alloy [J]. Mater. Trans. JIM, 1993, 34: 1234
19 He Q, Xu J. Locating malleable bulk metallic glasses in Zr-Ti-Cu-Al alloys with calorimetric glass transition temperature as an indicator [J]. J. Mater. Sci. Technol., 2012, 28: 1109
doi: 10.1016/S1005-0302(12)60180-7
20 Li D F, Shen Y, Xu J. Zr61Ti2Cu25Al12 bulk metallic glass under three-point bending: Characteristic of large-deflection deformation [J]. Intermetallics, 2021, 132: 107156
doi: 10.1016/j.intermet.2021.107156
21 Lin X H. Bulk glass formation and crystallization of Zr-Ti based alloys [D]. Pasadena: California Institute of Technology, 1997
22 Wang W H. The elastic properties, elastic models and elastic perspectives of metallic glasses [J]. Prog. Mater. Sci., 2012, 57: 487
doi: 10.1016/j.pmatsci.2011.07.001
23 Li H, Subhash G, Kecskes L J. Mechanical behavior of tungsten preform reinforced bulk metallic glass composites [J]. Mater. Sci. Eng., 2005, A403: 134
24 Lin T, Hu Y, Kong L T, et al. Effect of surface roughness on plasticity of Zr52.5Cu17.9Ni14.6Al10Ti5 bulk metallic glass [J]. Trans. Nonferrous Met. Soc. China, 2012, 22: 1407
doi: 10.1016/S1003-6326(11)61333-2
25 Yao L Q. Flow behavior of Zr35Ti30Cu8 . 25Be 26.75 amorphous alloy at high temperature and high strain sate [D]. Wuhan: Huazhong University of Science and Technology, 2019
姚丽倩. Zr35Ti30Cu8 . 25Be 26.75非晶合金高温高应变速率流变行为研究 [D]. 武汉: 华中科技大学, 2019
26 Wang G, Shen J, Sun J F, et al. Superplasticity and superplastic forming ability of a Zr-Ti-Ni-Cu-Be bulk metallic glass in the supercooled liquid region [J]. J. Non-Cryst. Solids, 2005, 351: 209
doi: 10.1016/j.jnoncrysol.2004.11.006
27 Lv J W, Wang F L, Zhang S, et al. Deformation behaviours of TiZrCuNiBe bulk metallic glass in supercooled liquid region [J]. J. Alloys Compd., 2020, 844: 156101
doi: 10.1016/j.jallcom.2020.156101
28 Zhang M, Liu L, Wu Y. Facilitation and correlation of flow in metallic supercooled liquid [J]. J. Chem. Phys., 2013, 139: 164508
doi: 10.1063/1.4826318
29 Kato H, Kawamura Y, Inoue A, et al. Newtonian to non-Newtonian master flow curves of a bulk glass alloy Pd40Ni10Cu30P20 [J]. Appl. Phys. Lett., 1998, 73: 3665
doi: 10.1063/1.122856
30 Li C Y, Yin J F, Ding J Q, et al. A thermal processing map of a ZrCuNiAlEr bulk metallic glass in the supercooled liquid region [J]. J. Mater. Sci., 2019, 54: 7246
doi: 10.1007/s10853-019-03363-5
31 Qiao J C, Wang Y J, Pelletier J M, et al. Characteristics of stress relaxation kinetics of La60Ni15Al25 bulk metallic glass [J]. Acta Mater., 2015, 98: 43
doi: 10.1016/j.actamat.2015.07.020
32 Mei J N, Soubeyroux J L, Blandin J J, et al. Homogeneous deformation of Ti41.5Cu37.5Ni7.5Zr2.5Hf5Si1 bulk metallic glass in the supercooled liquid region [J]. Intermetallics, 2011, 19: 48
doi: 10.1016/j.intermet.2010.09.005
33 Bletry M, Guyot P, Brechet Y, et al. Homogeneous deformation of Zr-Ti-Al-Cu-Ni bulk metallic glasses [J]. Intermetallics, 2004, 12: 1051
doi: 10.1016/j.intermet.2004.04.019
34 Zhang C, Qiao J C, Pelletier J M, et al. Arrhenius activation of Zr65Cu18Ni7Al10 bulk metallic glass in the supercooled liquid region [J]. Intermetallics, 2017, 86: 88
doi: 10.1016/j.intermet.2017.03.017
35 Lu J, Ravichandran G, Johnson W L. Deformation behavior of the Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass over a wide range of strain-rates and temperatures [J]. Acta Mater., 2003, 51: 3429
doi: 10.1016/S1359-6454(03)00164-2
36 Spaepen F, Turnbull D. A mechanism for the flow and fracture of metallic glasses [J]. Scr. Metall., 1974, 8: 563
doi: 10.1016/0036-9748(74)90070-2
37 Yao Z F, Qiao J C, Pelletier J M, et al. High temperature deformation behaviors of the Zr63.36Cu14.52Ni10.12Al12 bulk metallic glass [J]. J. Mater. Sci., 2016, 51: 4079
doi: 10.1007/s10853-016-9729-6
38 Cui J, Li J S, Wang J, et al. Rheological behavior of Cu-Zr-based metallic glass in the supercooled liquid region [J]. J. Alloys Compd., 2014, 592: 189
doi: 10.1016/j.jallcom.2014.01.014
39 Gun B, Laws K J, Ferry M. Elevated temperature flow behaviour of a Mg-based bulk metallic glass [J]. Mater. Sci. Eng., 2007, A471: 130
40 Tao M, Chokshi A H, Conner R D, et al. Deformation and crystallization of Zr-based amorphous alloys in homogeneous flow regime [J]. J. Mater. Res., 2010, 25: 1137
doi: 10.1557/JMR.2010.0134
41 Han Z, Li Y. Cooperative shear and catastrophic fracture of bulk metallic glasses from a shear-band instability perspective [J]. J. Mater. Res., 2009, 24: 3620
doi: 10.1557/jmr.2009.0442
42 Hu L, Ye F, Liang Y F, et al. Correlating the supercooled liquid region width with the fragility parameter in bulk metallic glasses [J]. Appl. Phys. Lett., 2012, 100: 021906
43 Evenson Z, Schmitt T, Nicola M, et al. High temperature melt viscosity and fragile to strong transition in Zr-Cu-Ni-Al-Nb(Ti) and Cu47Ti34Zr11Ni8 bulk metallic glasses [J]. Acta Mater., 2012, 60: 4712
doi: 10.1016/j.actamat.2012.05.019
44 Jia P, Xu J. Comparison of bulk metallic glass formation between Cu-Hf binary and Cu-Hf-Al ternary alloys [J]. J. Mater. Res., 2009, 24: 96
doi: 10.1557/JMR.2009.0014
45 Angell C A. Formation of glasses from liquids and biopolymers [J]. Science, 1995, 267: 1924
pmid: 17770101
46 Kato H, Wada T, Hasegawa M, et al. Fragility and thermal stability of Pt- and Pd-based bulk glass forming liquids and their correlation with deformability [J]. Scr. Mater., 2006, 54: 2023
doi: 10.1016/j.scriptamat.2006.03.025
47 Johnson W L, Na J H, Demetriou M D. Quantifying the origin of metallic glass formation [J]. Nat. Commun., 2016, 7: 10313
doi: 10.1038/ncomms10313 pmid: 26786966
48 Tong Y, Qiao J C, Pelletier J M, et al. Strong metallic glass: TiZr-HfCuNiBe high entropy alloy [J]. J. Alloys Compd., 2020, 820: 153119
doi: 10.1016/j.jallcom.2019.153119
49 Jiang H R, Bochtler B, Frey M, et al. Equilibrium viscosity and structural change in the Cu47.5Zr45.1Al7.4 bulk glass-forming liquid [J]. Acta Mater., 2020, 184: 69
doi: 10.1016/j.actamat.2019.11.039
50 Glade S C, Johnson W L. Viscous flow of the Cu47Ti34Zr11Ni8 glass forming alloy [J]. J. Appl. Phys., 2000, 87: 7249
doi: 10.1063/1.373411
51 Takeuchi A, Kato H, Inoue A. Vogel-Fulcher-Tammann plot for viscosity scaled with temperature interval between actual and ideal glass transitions for metallic glasses in liquid and supercooled liquid states [J]. Intermetallics, 2010, 18: 406
doi: 10.1016/j.intermet.2009.08.015
52 Wang W M, Gebert A, Roth S, et al. Glass formability and fragility of Fe61Co9 - x Zr8Mo5W x B17 (x = 0 and 2) bulk metallic glassy alloys [J]. Intermetallics, 2008, 16: 267
doi: 10.1016/j.intermet.2007.10.005
53 Yang Y, Zhou J H, Zhu F, et al. Determining the three-dimensional atomic structure of an amorphous solid [J]. Nature, 2021, 592: 60
doi: 10.1038/s41586-021-03354-0
[1] LI Jinfu, LI Wei. Structure and Glass-Forming Ability of Al-Based Amorphous Alloys[J]. 金属学报, 2022, 58(4): 457-472.
[2] ZHANG Jinyong, ZHAO Congcong, WU Yijin, CHEN Changjiu, CHEN Zheng, SHEN Baolong. Structural Characteristic and Crystallization Behavior of the (Fe0.33Co0.33Ni0.33)84 -x Cr8Mn8B x High-Entropy-Amorphous Alloy Ribbons[J]. 金属学报, 2022, 58(2): 215-224.
[3] HAN Luhui, KE Haibo, ZHANG Pei, SANG Ge, HUANG Huogen. Kinetic Crystallization Behavior of Amorphous U60Fe27.5Al12.5 Alloy[J]. 金属学报, 2022, 58(10): 1316-1324.
[4] LIU Riping, MA Mingzhen, ZHANG Xinyu. New Development of Research on Casting of Bulk Amorphous Alloys[J]. 金属学报, 2021, 57(4): 515-528.
[5] HU Xiang, GE Jiacheng, LIU Sinan, FU Shu, WU Zhenduo, FENG Tao, LIU Dong, WANG Xunli, LAN Si. Combustion Mechanism of Fe-Nb-B-Y Amorphous Alloys with an Anomalous Exothermic Phenomenon[J]. 金属学报, 2021, 57(4): 542-552.
[6] ZHU Min, OUYANG Liuzhang. Kinetics Tuning and Electrochemical Performance of Mg-Based Hydrogen Storage Alloys[J]. 金属学报, 2021, 57(11): 1416-1428.
[7] HUANG Huogen, ZHANG Pengguo, ZHANG Pei, WANG Qinguo. Comparison of Glass Forming Ability Between U-Co and U-Fe Base Systems[J]. 金属学报, 2020, 56(6): 849-854.
[8] GENG Yaoxiang, WANG Yingmin. Local Structure-Property Correlation of Fe-Based Amorphous Alloys: Based on Minor Alloying Research[J]. 金属学报, 2020, 56(11): 1558-1568.
[9] XU Xiuyue, LI Yanhui, ZHANG Wei. Fabrication of Nanoporous PtRuFe by Dealloying Amorphous Fe(Pt, Ru)B Ribbons and Their Methanol Electrocatalytic Properties[J]. 金属学报, 2020, 56(10): 1393-1400.
[10] JIN Chenri, YANG Suyuan, DENG Xueyuan, WANG Yangwei, CHENG Xingwang. Effect of Nano-Crystallization on Dynamic Compressive Property of Zr-Based Amorphous Alloy[J]. 金属学报, 2019, 55(12): 1561-1568.
[11] Hongyang XU,Haibo KE,Huogen HUANG,Pei ZHANG,Pengguo ZHANG,Tianwei LIU. Nanoindentation Creep Behavior of U65Fe30Al5 Amorphous Alloy[J]. 金属学报, 2017, 53(7): 817-823.
[12] Dianguo MA,Yingmin WANG,Kunio YUBUTA,Yanhui LI,Wei ZHANG. Effect of Co Content on the Structure and Magnetic Properties of Melt-Spun Fe55-xCoxPt15B30 Alloys[J]. 金属学报, 2017, 53(5): 609-614.
[13] Huogen HUANG,Hongyang XU,Pengguo ZHANG,Yingmin WANG,Haibo KE,Pei ZHANG,Tianwei LIU. U-Cr Binary Alloys with Anomalous Glass-Forming Ability[J]. 金属学报, 2017, 53(2): 233-238.
[14] Yaoxiang GENG,Kaiming HAN,Yingmin WANG,Jianbing QIANG,Qing WANG,Chuang DONG,Guifeng ZHANG,O TEGUS,Peter HAÜSSLER. COMPOSITION DESIGN OF Fe-B-Si-Ta BULK AMORPHOUS ALLOYS BASED ON CLUSTER+ GLUE ATOM MODEL[J]. 金属学报, 2015, 51(8): 1017-1024.
[15] Juan MU,Dongmei WANG,Yandong WANG. EFFECT OF COOLING RATE AND ASPECT RATIO ON MECHANICAL PROPERTIES OF Ti-BASED AMORPHOUS ALLOY COMPOSITES[J]. 金属学报, 2015, 51(12): 1435-1440.
No Suggested Reading articles found!