Please wait a minute...
Acta Metall Sin  2021, Vol. 57 Issue (9): 1199-1214    DOI: 10.11900/0412.1961.2021.00036
Overview Current Issue | Archive | Adv Search |
Progress in Interfacial Thermodynamics and Grain Boundary Complexion Diagram
HU Biao1, ZHANG Huaqing2, ZHANG Jin1, YANG Mingjun2, DU Yong2(), ZHAO Dongdong3
1.School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China
2.State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
3.School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
Cite this article: 

HU Biao, ZHANG Huaqing, ZHANG Jin, YANG Mingjun, DU Yong, ZHAO Dongdong. Progress in Interfacial Thermodynamics and Grain Boundary Complexion Diagram. Acta Metall Sin, 2021, 57(9): 1199-1214.

Download:  HTML  PDF(4420KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Grain boundaries (GBs), a crucial component of microstructures, have a significant influence on the properties of materials. The GB complexion (GBC) transitions are essential information to accurately explain numerous material phenomena. However, owing to the complexity of GB structures and the difficulty in observation of GBC transitions, there is still no direct evidence and mechanism explanation for these material phenomena. With the advancement of characterization equipment, especially spherical aberration-correction transmission electron microscopy, coupled with powerful computer simulation, the establishment of interfacial thermodynamic models to construct different types of GBC diagrams, which provide a broad prospect for the study of GB structures and GBC transitions, is essential. In this paper, the progress of interface thermodynamics and GBC diagrams from the aspects of the classification and characterization of GBs and GBC transitions, interface thermodynamic models, and the construction of GBC diagrams were reviewed. The paper also looks forward to the future development of interface thermodynamics and GBC diagrams.

Key words:  grain boundary      grain boundary complexion transition      interface thermodynamic model      grain boundary complexion diagram     
Received:  21 January 2021     
ZTFLH:  TB113.14  
Fund: National Natural Science Foundation of China(52071002);Natural Science Foundation of Anhui Province(2008085QE200)
About author:  DU Yong, professor, Tel: (0731)88877300, E-mail: yong-du@csu.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2021.00036     OR     https://www.ams.org.cn/EN/Y2021/V57/I9/1199

Fig.1  Six types of Dillon-Harmer complexions as originally discovered in undoped and doped Al2O3[26] (a-f), analogous examples of Dillon-Harmer complexions in metallic materials[12,27,37-39] (g-l), and schematics of six types of Dillon-Harmer complexions[37] (m-r)
Fig.2  Schematics of wetting transition[37]
Fig.3  Coexistence and phase transformation of Σ5 (310)[001] grain boundary and two grain boundary phases in bcc structure W[53]
Fig.4  The grain boundary mobility (γMb) versus temperature for undoped and doped alumina[26] along with schematic depiction of the six Dillon-Harmer complexions (AGG—abnormal grain growth, NGG—normal grain growth)
TypeDefinition modeTerminologyMeaning
ComplexionDefined byCongruentGrain boundary characters (R and n) remain invariant, atomic structure
transitionsgeometrytransitionand composition of the grain boundary core change
categoryNon-congruentGrain boundary characters (R and/or n) change
transition
StructuralBulk thermodynamic parameters (T, P, μ, etc.) change, interfacial
transitionthermodynamic parameters (R, n, etc.) remain invariant
FacetingA single complexion decomposes into two complexions, the grain
transitionboundary plane normal n decomposes into n1 and n2
DissociationA single complexion decomposes into two complexions, a single grain
transitionboundary dissociates into two new interfaces with the misorientation
relationship of R R1 + R2
Defined byPremeltingA disordered, liquid-like film at a grain boundary forms below the
structure and/ortransitionmelting temperature (or solidus) of the bulk phase
compositionPrewettingA nanolayer complexion with fixed equilibrium thickness forms at the
transitioninterface near the temperature or composition of the wetting transition
AdsorptionA dramatic change in the composition of an interface in which the
transitionrelative amount of solute increases or decreases significantly
ComplexionDefined byIntrinsicThe complexion exists in pure systems, its composition is identical to
categorycompositioncomplexionthe bulk composition
ExtrinsicThe complexion exists in a non-pure system, its composition is in
complexiongeneral not equal to the bulk composition
Dillon-HarmerCleanA complexion is structurally abrupt, solute segregation is not
complexioncomplexionnecessarily entirely absent, but is minimal or is not observed at all,
which does not lead to an increase in thickness of the grain boundary
core
MonolayerThe majority of the adsorbed solute is confined to a thickness of a
complexionsingle atomic layer
BilayerThe most of the adsorbed solute occupies a thickness of two atomic
complexionlayers
TrilayerThe most of the adsorbed solute occupies a thickness of three atomic
complexionlayers
NanolayerThe adsorbed solute occupies a thickness larger than three atomic
complexionlayers, but which is still finite, fixed and governed by equilibrium
thermodynamics, equivalent to intergranular film (IGF)
WettingThe bulk wetting film (solid or liquid) at a grain boundary, it has two
complexioncomplexions on each side of the wetting film
Defined byDryA complexion with no adsorbed solute or very little adsorption,
thickness andcomplexioncorresponds to the monolayer Dillon-Harmer complexion
compositionMoistA complexion with multilayer solute adsorption, corresponds to the
complexionbilayer, trilayer and nanolayer Dillon-Harmer complexions
WetRefers to the bulk wetting film at a boundary, corresponds to the
complexionwetting Dillon-Harmer complexion
Table 1  Terminology related to complexion transitions and complexions[37]
Fig.5  APT analyses of Al-Zn-Mg-Cu alloy after aging at 120oC for 0.5 h[42]
Fig.6  Schematics of subsolidus quasi-liquid intergranular films[92] (γcl and γGB are the excess free energies for crystal-liquid and grain boundary, respectively. The superscript “(0)” is used to denote a hypothetic “dry” and “perfectly crystalline” interface. Δγ is the change of interface energy. h is the thickness of the quasi-liquid intergranular film, σinterfacial(h) is the interfacial potential that represents the interactions of two interfaces when the film is thin)
Fig.7  Schematic of a symmetrical flat grain boundary[94] (ρ is the atomic density at the grain boundary relative to the bulk, ρGB is the average relative atomic density within the grain boundary plane)
Fig.8  Schematics of procedures to construct an isothermal section of a ternary grain boundary λ diagram for W-Ni-Fe at 1673 K (W—the primary element with underline, λ—the thermodynamic parameter, T—absolute temperature)[35] and HRTEM image[10]
Fig.9  Density-based Gibbs free energy of the Pt-Au system at 300 K[94] (GSSGB is the density-based Gibbs free energy of a regular solid solution for grain boundary, XAu is the composition of Au in mole fraction)
Fig.10  The bulk phase diagram (ρ = 1) and grain boundary phase diagram (ρGB = 0.75) of the Pt-Au system[94]
Fig.11  The segregation isotherm of the Pt-Au system at 700 K[94] (XAuGB is the Au composition of the grain boundary, XAuBulk is the Au composition of the bulk far from the grain boundary)
1 Dash J G. Surface melting [J]. Contemp. Phys., 1989, 30: 89
2 Dash J G, Fu H Y, Wettlaufer J S. The premelting of ice and its environmental consequences [J]. Rep. Prog. Phys., 1995, 58: 115
3 Dash J G, Rempel A W, Wettlaufer J S. The physics of premelted ice and its geophysical consequences [J]. Rev. Mod. Phys., 2006, 78: 695
4 Hsieh T E, Balluffi R W. Experimental study of grain boundary melting in aluminum [J]. Acta Metall., 1989, 37: 1637
5 Chang L S, Rabkin E, Straumal B, et al. Temperature dependence of the grain boundary segregation of Bi in Cu polycrystals [J]. Scr. Mater., 1997, 37: 729
6 Divinski S, Lohmann M, Herzig C. Grain-boundary melting phase transition in the Cu-Bi system [J]. Phys. Rev., 2005, 71B: 104104
7 Straumal B, Baretzky B. Grain boundary phase transitions and their influence on properties of polycrystals [J]. Interface Sci., 2004, 12: 147
8 Noskovich O I, Rabkin E I, Semenov V N, et al. Wetting and premelting phase transitions in 38°[100] tilt grain boundary in (Fe-12 at.%Si)-Zn alloy in the vicinity of the A2-B2 bulk ordering in Fe-12 at.% Si alloy [J]. Acta Metall. Mater., 1991, 39: 3091
9 Rabkin E I, Semenov V N, Shvindlerman L S, et al. Penetration of tin and zinc along tilt grain boundaries 43°[100] in Fe-5 at.% Si alloy: Premelting phase transition? [J]. Acta Metall. Mater., 1991, 39: 627
10 Luo J, Gupta V K, Yoon D H. Segregation-induced grain boundary premelting in nickel-doped tungsten [J]. Appl. Phys. Lett., 2005, 87: 231902
11 Gupta V K, Yoon D H, Meyer III H M, et al. Thin intergranular films and solid-state activated sintering in nickel-doped tungsten [J]. Acta Mater., 2007, 55: 3131
12 Shi X M, Luo J. Grain boundary wetting and prewetting in Ni-doped Mo [J]. Appl. Phys. Lett., 2009, 94: 251908
13 Shi X M, Luo J. Developing grain boundary diagrams as a materials science tool: A case study of nickel-doped molybdenum [J]. Phys. Rev., 2011, 84B: 014105
14 Jung J I, Zhou N X, Luo J. Effects of sintering aids on the densification of Mo-Si-B alloys [J]. J. Mater. Sci., 2012, 47: 8308
15 Wang H F, Chiang Y M. Thermodynamic stability of intergranular amorphous films in bismuth‐doped zinc oxide [J]. J. Am. Ceram. Soc., 1998, 81: 89
16 Luo J, Wang H F, Chiang Y M. Origin of solid-state activated sintering in Bi2O3-doped ZnO [J]. J. Am. Ceram. Soc., 1999, 82: 916
17 MacLaren I, Cannon R M, Gülgün M A, et al. Abnormal grain growth in alumina: Synergistic effects of yttria and silica [J]. J. Am. Ceram. Soc., 2003, 86: 650
18 Luo J. Stabilization of nanoscale quasi-liquid interfacial films in inorganic materials: A review and critical assessment [J]. Crit. Rev. Solid State Mater. Sci., 2007, 32: 67
19 Tang M, Carter W C, Cannon R M. Diffuse interface model for structural transitions of grain boundaries [J]. Phys. Rev., 2006, 73B: 024102
20 Sutton A P, Balluffi R W. Interfaces in Crystalline Materials [M]. Oxford: Oxford University Press, 1995: 414
21 Lejček P, Hofmann S. Thermodynamics and structural aspects of grain boundary segregation [J]. Crit. Rev. Solid State Mater. Sci., 1995, 20: 1
22 Harmer M P. The phase behavior of interfaces [J]. Science, 2011, 332: 182
23 Hart E W. Two-dimensional phase transformation in grain boundaries [J]. Scr. Metall., 1968, 2: 179
24 Rottman C. Theory of phase transitions at internal interfaces [J]. J. Phys. Colloques, 1988, 49: C5-313
25 Dillon S J, Harmer M P. Multiple grain boundary transitions in ceramics: A case study of alumina [J]. Acta Mater., 2007, 55: 5247
26 Dillon S J, Tang M, Carter W C, et al. Complexion: A new concept for kinetic engineering in materials science [J]. Acta Mater., 2007, 55: 6208
27 Luo J, Cheng H K, Asl K M, et al. The role of a bilayer interfacial phase on liquid metal embrittlement [J]. Science, 2011, 333: 1730
28 Meiners T, Frolov T, Rudd R E, et al. Observations of grain-boundary phase transformations in an elemental metal [J]. Nature, 2020, 579: 375
29 Liu X W, Song X Y, Wang H B, et al. Complexions in WC-Co cemented carbides [J]. Acta Mater., 2018, 149: 164
30 Song X Y, Zhang J X, Li L M, et al. Correlation of thermodynamics and grain growth kinetics in nanocrystalline metals [J]. Acta Mater., 2006, 54: 5541
31 Wynblatt P, Chatain D. Solid-state wetting transitions at grain boundaries [J]. Mater. Sci. Eng., 2008, A495: 119
32 Mishin Y, Boettinger W J, Warren J A, et al. Thermodynamics of grain boundary premelting in alloys. I. Phase-field modeling [J]. Acta Mater., 2009, 57: 3771
33 Luo J. Liquid-like interface complexion: from activated sintering to grain boundary diagrams [J]. Curr. Opin. Solid State Mater. Sci., 2008, 12: 81
34 Zhou N X, Yu Z Y, Zhang Y Y, et al. Calculation and validation of a grain boundary complexion diagram for Bi-doped Ni [J]. Scr. Mater., 2017, 130: 165
35 Zhou N X, Luo J. Developing grain boundary diagrams for multicomponent alloys [J]. Acta Mater., 2015, 91: 202
36 Wang L, Kamachali R D. Density-based grain boundary phase diagrams: Application to Fe-Mn-Cr, Fe-Mn-Ni, Fe-Mn-Co, Fe-Cr-Ni and Fe-Cr-Co alloy systems [J]. Acta Mater., 2021, 207: 116668
37 Cantwell P R, Tang M, Dillon S J, et al. Grain boundary complexions [J]. Acta Mater., 2014, 62: 1
38 Duscher G, Chisholm M F, Alber U, et al. Bismuth-induced embrittlement of copper grain boundaries [J]. Nat. Mater., 2004, 3: 621
39 Sigle W, Richter G, Rühle M. Insight into the atomic-scale mechanism of liquid metal embrittlement [J]. Appl. Phys. Lett., 2006, 89: 121911
40 Khalajhedayati A, Pan Z L, Rupert T J. Manipulating the interfacial structure of nanomaterials to achieve a unique combination of strength and ductility [J]. Nat. Commun., 2016, 7: 10802: 1
41 Kundu A, Asl K M, Luo J, et al. Identification of a bilayer grain boundary complexion in Bi-doped Cu [J]. Scr. Mater., 2013, 68: 146
42 Zhao H, De Geuser F, Kwiatkowski da Silva A, et al. Segregation assisted grain boundary precipitation in a model Al-Zn-Mg-Cu alloy [J]. Acta Mater., 2018, 156: 318
43 Jia H L, Bjørge R, Cao L F, et al. Quantifying the grain boundary segregation strengthening induced by post-ECAP aging in an Al-5Cu alloy [J]. Acta Mater., 2018, 155: 199
44 Kwiatkowski da Silva A, Ponge D, Peng Z, et al. Phase nucleation through confined spinodal fluctuations at crystal defects evidenced in Fe-Mn alloys [J]. Nat. Commun., 2018, 9: 1137
45 Herring C. Some theorems on the free energies of crystal surfaces [J]. Phys. Rev., 1951, 82: 87
46 Ference T G, Balluffi R W. Observation of a reversible grain boundary faceting transition induced by changes of composition [J]. Scr. Matall., 1988, 22: 1929
47 Park C W, Yoon D Y, Blendell J E, et al. Singular grain boundaries in alumina and their roughening transition [J]. J. Am. Ceram. Soc., 2003, 86: 603
48 Yoon D Y, Cho Y K. Roughening transition of grain boundaries in metals and oxides [J]. J. Mater. Sci., 2005, 40: 861
49 Olmsted D L, Foiles S M, Holm E A. Grain boundary interface roughening transition and its effect on grain boundary mobility for non-faceting boundaries [J]. Scr. Mater., 2007, 57: 1161
50 Olmsted D L, Holm E A, Foiles S M. Survey of computed grain boundary properties in face-centered cubic metals—II: Grain boundary mobility [J]. Acta Mater., 2009, 57: 3704
51 Holm E A, Foiles S M. How grain growth stops: A mechanism for grain-growth stagnation in pure materials [J]. Science, 2010, 328: 1138
52 Cahn J W. Transitions and phase equilibria among grain boundary structures [J]. J. Phys. Colloques, 1982, 43: C6-199
53 Frolov T, Zhu Q, Oppelstrup T, et al. Structures and transitions in bcc tungsten grain boundaries and their role in the absorption of point defects [J]. Acta Mater., 2018, 159: 123
54 Zhu Q, Samanta A, Li B X, et al. Predicting phase behavior of grain boundaries with evolutionary search and machine learning [J]. Nat. Commun., 2018, 9: 467
55 Medlin D L, Hattar K, Zimmerman J A, et al. Defect character at grain boundary facet junctions: Analysis of an asymmetric Σ = 5 grain boundary in Fe [J]. Acta Mater., 2017, 124: 383
56 Aramfard M, Deng C. Mechanically enhanced grain boundary structural phase transformation in Cu [J]. Acta Mater., 2018, 146: 304
57 Frolov T, Asta M, Mishin Y. Segregation-induced phase transformations in grain boundaries [J]. Phys. Rev., 2015, 92B: 020103(R)
58 Cao F H, Chen Y, Zhao S T, et al. Grain boundary phase transformation in a CrCoNi complex concentrated alloy [J]. Acta Mater., 2021, 209: 116786
59 Cannon R M, Esposito L. High temperature colloidal behavior: Particles in liquid silicates [J]. Z. Metallkd., 1999, 90: 1002
60 Cannon R M, Rühle M, Hoffmann M J, et al. Adsorption and wetting mechanisms at ceramic grain boundaries [A]. Grain Boundary Engineering in Ceramics [C]. Westerville, OH: American Ceramic Society, 2000: 427
61 Clarke D R, Thomas G. Grain boundary phases in a hot-pressed MgO fluxed silicon nitride [J]. J. Am. Ceram. Soc., 1977, 60: 491
62 Lou L K V, Mitchell T E, Heuer A H. Impurity phases in hot-pressed Si3N4 [J]. J. Am. Ceram. Soc., 1978, 61: 392
63 Seah M P, Hondros E D. Grain boundary segregation [J]. Proc. Roy. Soc., 1973, 335A: 191
64 Pang Y, Wynblatt P. Correlation between grain-boundary segregation and grain-boundary plane orientation in Nb-doped TiO2 [J]. J. Am. Ceram. Soc., 2005, 88: 2286
65 Wynblatt P, Chatain D, Pang Y. Some aspects of the anisotropy of grain boundary segregation and wetting [J]. J. Mater. Sci., 2006, 41: 7760
66 Kelly T F, Miller M K. Atom probe tomography [J]. Rev. Sci. Instrum., 2007, 78: 031101
67 Seidman D N. Three-dimensional atom-probe tomography: Advances and applications [J]. Annu. Rev. Mater. Res., 2007, 37: 127
68 Miller M K, Forbes R G. Tutorial review: Atom probe tomography [J]. Mater. Charact., 2009, 60: 461
69 Detor A J, Miller M K, Schuh C A. Solute distribution in nanocrystalline Ni-W alloys examined through atom probe tomography [J]. Philos. Mag., 2006, 86: 4459
70 Chellali M R, Balogh Z, Schmitz G. Nano-analysis of grain boundary and triple junction transport in nanocrystalline Ni/Cu [J]. Ultramicroscopy, 2013, 132: 164
71 Sauvage X, Wilde G, Divinski S V, et al. Grain boundaries in ultrafine grained materials processed by severe plastic deformation and related phenomena [J]. Mater. Sci. Eng., 2012, A540: 1
72 Krakauer B W, Seidman D N. Subnanometer scale study of segregation at grain boundaries in an Fe(Si) alloy [J]. Acta Mater., 1998, 46: 6145
73 Shibata N, Pennycook S J, Gosnell T R, et al. Observation of rare-earth segregation in silicon nitride ceramics at subnanometre dimensions [J]. Nature, 2004, 428: 730
74 Baram M, Garofalini S H, Kaplan W D. Order in nanometer thick intergranular films at Au-sapphire interfaces [J]. Acta Mater., 2011, 59: 5710
75 Hart E W, Burke J J, Weiss V. Ultrafine-Grain Metals [M]. Syracuse, NY: Syracuse University Press, 1970: 247
76 Hart E W. Grain boundary phase transformations [A]. Hu H. The Nature and Behavior of Grain Boundaries [M]. New York: Springer, 1972: 155
77 Dillon S J, Harmer M P. Relating grain boundary complexion to grain boundary kinetics II: Silica-doped alumina [J]. J. Am. Ceram. Soc., 2008, 91: 2314
78 Dillon S J, Harmer M P. Relating grain-boundary complexion to grain-boundary kinetics I: Calcia-doped alumina [J]. J. Am. Ceram. Soc., 2008, 91: 2304
79 Dillon S J, Harmer M P. Demystifying the role of sintering additives with "complexion" [J]. J. Eur. Ceram. Soc., 2008, 28: 1485
80 Dillon S J, Harmer M P, Rohrer G S. The relative energies of normally and abnormally growing grain boundaries in alumina displaying different complexions [J]. J. Am. Ceram. Soc., 2010, 93: 1796
81 Baram M, Chatain D, Kaplan W D. Nanometer-thick equilibrium films: The interface between thermodynamics and atomistics [J]. Science, 2011, 332: 206
82 Bojarski S A, Ma S L, Lenthe W, et al. Changes in the grain boundary character and energy distributions resulting from a complexion transition in Ca-doped yttria [J]. Metall. Mater. Trans., 2012, 43A: 3532
83 Rohrer G S. Grain boundary energy anisotropy: A review [J]. J. Mater. Sci., 2011, 46: 5881
84 Dillon S J, Harmer M P, Rohrer G S. Influence of interface energies on solute partitioning mechanisms in doped aluminas [J]. Acta Mater., 2010, 58: 5097
85 Saylor D M, Morawiec A, Rohrer G S. The relative free energies of grain boundaries in magnesia as a function of five macroscopic parameters [J]. Acta Mater., 2003, 51: 3675
86 Dillon S J, Rohrer G S. Characterization of the grain-boundary character and energy distributions of yttria using automated serial sectioning and EBSD in the FIB [J]. J. Am. Ceram. Soc., 2009, 92: 1580
87 Li J, Dillon S J, Rohrer G S. Relative grain boundary area and energy distributions in nickel [J]. Acta Mater., 2009, 57: 4304
88 Rohrer G S, Li J, Lee S, et al. Deriving grain boundary character distributions and relative grain boundary energies from three-dimensional EBSD data [J]. Mater. Sci. Technol., 2010, 26: 661
89 Tang M, Carter W C, Cannon R M. Grain boundary transitions in binary alloys [J]. Phys. Rev. Lett., 2006, 97: 075502
90 Luo J, Shi X M. Grain boundary disordering in binary alloys [J]. Appl. Phys. Lett., 2008, 92: 101901
91 Shi X M, Luo J. Decreasing the grain boundary diffusivity in binary alloys with increasing temperature [J]. Phys. Rev. Lett., 2010, 105: 236102
92 Luo J. Developing Interfacial phase diagrams for applications in activated sintering and beyond: current status and future directions [J]. J. Am. Ceram. Soc., 2012, 95: 2358
93 Zhou N X, Hu T, Luo J. Grain boundary complexions in multicomponent alloys: Challenges and opportunities [J]. Curr. Opin. Solid State Mater. Sci., 2016, 20: 268
94 Kamachali R D. A model for grain boundary thermodynamics [J]. RSC Adv., 2020, 10: 26728
95 Benedictus R, Böttger A, Mittemeijer E J. Thermodynamic model for solid-state amorphization in binary systems at interfaces and grain boundaries [J]. Phys. Rev., 1996, 54B: 9109
96 Jeurgens L P H, Wang Z M, Mittemeijer E J. Thermodynamics of reactions and phase transformations at interfaces and surfaces [J]. Int. J. Mater. Res., 2009, 100: 1281
97 Turnbull D. Theory of grain boundary migration rates [J]. JOM, 1951, 3: 661
98 Redlich O, Kister A T. Algebraic representation of thermodynamic properties and the classification of solutions [J]. Ind. Eng. Chem., 1948, 40: 345
99 Grolier V, Schmid-Fetzer R. Experimental study of Au-Pt-Sn phase equilibria and thermodynamic assessment of the Au-Pt and Au-Pt-Sn systems [J]. J. Electron. Mater., 2008, 37: 264
100 Su Y J, Fu H D, Bai Y, et al. Progress in materials genome engineering in China [J]. Acta Metall. Sin., 2020, 56: 1313
宿彦京, 付华栋, 白 洋等. 中国材料基因工程研究进展 [J]. 金属学报, 2020, 56: 1313
[1] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
[2] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[3] XU Yongsheng, ZHANG Weigang, XU Lingchao, DAN Wenjiao. Simulation of Deformation Coordination and Hardening Behavior in Ferrite-Ferrite Grain Boundary[J]. 金属学报, 2023, 59(8): 1042-1050.
[4] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[5] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[6] LI Xin, JIANG He, YAO Zhihao, DONG Jianxin. Theoretical Calculation and Analysis of the Effect of Oxygen Atom on the Grain Boundary of Superalloy Matrices Ni, Co and NiCr[J]. 金属学报, 2023, 59(2): 309-318.
[7] YANG Du, BAI Qin, HU Yue, ZHANG Yong, LI Zhijun, JIANG Li, XIA Shuang, ZHOU Bangxin. Fractal Analysis of the Effect of Grain Boundary Character on Te-Induced Brittle Cracking in GH3535 Alloy[J]. 金属学报, 2023, 59(2): 248-256.
[8] LIU Lujun, LIU Zheng, LIU Renhui, LIU Yong. Grain Boundary Structure and Coercivity Enhancement of Nd90Al10 Alloy Modified NdFeB Permanent Magnets by GBD Process[J]. 金属学报, 2023, 59(11): 1457-1465.
[9] WANG Jiangwei, CHEN Yingbin, ZHU Qi, HONG Zhe, ZHANG Ze. Grain Boundary Dominated Plasticity in Metallic Materials[J]. 金属学报, 2022, 58(6): 726-745.
[10] LI Haiyong, LI Saiyi. Effect of Temperature on Migration Behavior of <111> Symmetric Tilt Grain Boundaries in Pure Aluminum Based on Molecular Dynamics Simulations[J]. 金属学报, 2022, 58(2): 250-256.
[11] LIU Zhongwu, HE Jiayi. Several Issues on the Development of Grain Boundary Diffusion Process for Nd-Fe-B Permanent Magnets[J]. 金属学报, 2021, 57(9): 1155-1170.
[12] NI Ke, YANG Yinhui, CAO Jianchun, WANG Liuhang, LIU Zehui, QIAN Hao. Softening Behavior of 18.7Cr-1.0Ni-5.8Mn-0.2N Low Nickel-Type Duplex Stainless Steel During Hot Compression Deformation Under Large Strain[J]. 金属学报, 2021, 57(2): 224-236.
[13] SUN Jia, LI Xuexiong, ZHANG Jinhu, WANG Gang, YANG Mei, WANG Hao, XU Dongsheng. Phase Field Modeling of Formation Mechanism of Grain Boundary Allotriomorph in βα Phase Transformation in Ti-6Al-4V Alloy[J]. 金属学报, 2020, 56(8): 1113-1122.
[14] LI Xiucheng,SUN Mingyu,ZHAO Jingxiao,WANG Xuelin,SHANG Chengjia. Quantitative Crystallographic Characterization of Boundaries in Ferrite-Bainite/Martensite Dual-Phase Steels[J]. 金属学报, 2020, 56(4): 653-660.
[15] SUN Zhengyang, WANG Yutian, LIU Wenbo. Phase-Field Simulation of the Interaction Between Pore and Grain Boundary[J]. 金属学报, 2020, 56(12): 1643-1653.
No Suggested Reading articles found!