CMAS Corrosion Behavior and Protection Method of Thermal Barrier Coatings for Aeroengine
GUO Lei1,2,3(), GAO Yuan1, YE Fuxing1,2,3, ZHANG Xinmu1
1.School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China 2.Tianjin Key Laboratory of Advanced Joining Technology, Tianjin University, Tianjin 300072, China 3.Key Laboratory of Advanced Ceramics and Machining Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
Cite this article:
GUO Lei, GAO Yuan, YE Fuxing, ZHANG Xinmu. CMAS Corrosion Behavior and Protection Method of Thermal Barrier Coatings for Aeroengine. Acta Metall Sin, 2021, 57(9): 1184-1198.
Thermal barrier coating (TBC) is a core aero-engine turbine blade technology, which can significantly increase an engine's operating temperature, thrust, and working efficiency. Moreover, high-engine operating temperatures make aero-engine turbine blades and their TBCs suffer from severe corrosion of environmental deposits (the main components are CaO, MgO, Al2O3, and SiO2, together referred to as CMAS), causing premature failure. CMAS corrosion has become a key issue that limits the service temperature and lifetimes of TBCs, and its protection has been a research hotspot. In this paper, first, the scholars' understanding of CMAS corrosion to TBCs and the characteristics of CMAS were reviewed. Then, CMAS corrosion mechanisms for TBCs were briefly described. The protection methods of TBCs from CMAS corrosion were elaborated from the aspects of TBC's surface protection layer design, coating component modification, new CMAS-resistant coating materials development, and coating microstructure design. Finally, the application of TBCs in ultrahigh temperature environments and the development direction of corrosion protection were forecasted.
Fig.1 Cross-section microstructures of yttria partially stabilized zirconia (YSZ) coatings by different preparation methods[34](a) air plasma spraying (APS) (b) electron beam physical vapor deposition (EB-PVD)
Fig.2 Degradation of thermal barrier coatings (TBCs) by CMAS (CaO, MgO, Al2O3, and SiO2) at high temperatures(a) thermochemical degradation[43](b) thermomechanical degradation[13]
Fig.3 Cross-sectional images of YSZ coatings with Pt films after heat treatment at 1250oC for 4 h with CMAS deposits[54]
Fig.4 Cross-sectional microstructures of Ti2AlC (a) and EDS results of Ca (b), Mg (c), Al (d), Ti (e), and O (f) elements[72]
Fig.5 Cross-sectional microstructures with low (a, c) and high (b, d) magnifications of LaPO4/YSZ coatings after CMAS attack at 1250oC for 2 h (a, b) and 10 h (c, d)[95]
Fig.6 Surface and fracture cross-sectional morphologies of laser-glazed coatings before (a, c, e) and after (b, d, f) parameter optimization
Fig.7 Micrographs of laser-glazed coatings after CMAS attack at 1250oC for 0.5 h (a, b) and 4 h (c, d) [43]
1
Guo H B, Gong S K, Xu H B. Progress in thermal barrier coatings for advanced aeroengines [J]. Mater. China, 2009, 28: 18
Hua J J, Zhang L P, Liu Z W, et al. Progress of research on the failure mechanism of thermal barrier coatings [J]. J. Inorg. Mater., 2012, 27: 680
3
Costa G, Harder B J, Wiesner V L, et al. Thermodynamics of reaction between gas-turbine ceramic coatings and ingested CMAS corrodents [J]. J. Am. Ceram. Soc., 2018, 102: 2948
Zhang X F, Zhou K S, Zhang J F, et al. Structure evolution of 7YSZ thermal barrier coating during thermal shock testing [J]. J. Inorg. Mater., 2015, 30: 1261
Zhang Y J, Sun X F, Jin T, et al. Microstructure of air plasma sprayed YSZ nanostructured thermal barrier coating [J]. Acta Metall. Sin., 2003, 39: 395
Li M H, Sun X F, Zhang Z Y, et al. Oxidation and phase structure of the bond coat in EB-PVD thermal barrier coatings during thermal cycling [J]. Acta Metall. Sin., 2002, 38: 79
Keshavarz M, Idris M H, Ahmad N. Mechanical properties of stabilized zirconia nanocrystalline EB-PVD coating evaluated by micro and nano indentation [J]. J. Adv. Ceram., 2013, 2: 333
10
Song W J, Lavallée Y, Hess K U, et al. Volcanic ash melting under conditions relevant to ash turbine interactions [J]. Nat. Commun., 2016, 7: 10795
11
Smialek J L, Archer F A, Garlick R G. The chemistry of saudi arabian sand: A deposition problem on helicopter turbine airfoils [A]. Advances in Synthesis and Processes [C]. Covina: SAMPE, 1992: 20
12
Borom M P, Johnson C A, Peluso L A. Role of environmental deposits and operating surface temperature in spallation of air plasma sprayed thermal barrier coatings [J]. Surf. Coat. Technol., 1996, 86-87: 116
13
Mercer C, Faulhaber S, Evans A G, et al. A delamination mechanism for thermal barrier coatings subject to calcium-magnesium-alumino-silicate (CMAS) infiltration [J]. Acta Mater., 2005, 53: 1029
14
Smialek J L, Archer F A, Garlick R G. Turbine airfoil degradation in the persian gulf war [J]. JOM, 1994, 46(12): 39
15
Shifler D A, Choi S R. CMAS effects on ship gas-turbine components/materials [A]. ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition [C]. Oslo: American Society Mechanical Engineers, 2018: 1
16
Toriz F C, Thakker A B, Gupta S K. Thermal barrier coatings for jet engines [A]. ASME 1988 International Gas Turbine and Aeroengine Congress and Exposition [C]. Amsterdam: ASME, 1988: 1
17
Kim J, Dunn M G, Baran A J, et al. Deposition of volcanic materials in the hot sections of two gas turbine engines [J]. J. Eng. Gas. Turb. Power, 1993, 115: 641
18
Stott F H, De Wet D J, Taylor R. Degradation of thermal-barrier coatings at very high temperatures [J]. MRS Bull., 1994, 19: 46
19
Aygun A, Vasiliev A L, Padture N P, et al. Novel thermal barrier coatings that are resistant to high-temperature attack by glassy deposits [J]. Acta Mater., 2007, 55: 6734
20
Gledhill A. Thermal barrier coatings chemically and mechanically resistant to high temperature attack by molten ashes [D]. Columbus, Ohio: The Ohio State University, 2011
21
Levi C G, Hutchinson J W, Vidal-Sétif M H, et al. Environmental degradation of thermal-barrier coatings by molten deposits [J]. MRS Bull., 2012, 37: 932
22
Poerschke D L, Jackson R W, Levi C G. Silicate deposit degradation of engineered coatings in gas turbines: Progress toward models and materials solutions [J]. Annu. Rev. Mater. Res., 2017, 47: 297
23
Clarke D R, Oechsner M, Padture N P. Thermal barrier coatings for more efficient gas-turbine engines [J]. MRS Bull., 2012, 37: 891
24
Naraparaju R, Chavez J J G, Schulz U, et al. Interaction and infiltration behavior of Eyjafjallajökull, Sakurajima volcanic ashes and a synthetic CMAS containing FeO with/in EB-PVD ZrO2-65wt% Y2O3 coating at high temperature [J]. Acta Mater., 2017, 136: 164
25
Zhang B P, Song W J, Guo H B. Wetting, infiltration and interaction behavior of CMAS towards columnar YSZ coatings deposited by plasma spray physical vapor [J]. J. Eur. Ceram. Soc., 2018, 38: 3564
26
Dean J, Taltavull C, Clyne T W. Influence of the composition and viscosity of volcanic ashes on their adhesion within gas turbine aeroengines [J]. Acta Mater., 2016, 109: 8
27
Poerschke D L, Barth T L, Levi C G. Equilibrium relationships between thermal barrier oxides and silicate melts [J]. Acta Mater., 2016, 120: 302
28
Wiesner V L, Bansal N P. Mechanical and thermal properties of calcium-magnesium aluminosilicate (CMAS) glass [J]. J. Eur. Ceram. Soc., 2015, 35: 2907
29
Jackson R W, Zaleski E M, Poerschke D L, et al. Interaction of molten silicates with thermal barrier coatings under temperature gradients [J]. Acta Mater., 2015, 89: 396
30
Song W J, Lavallee Y, Wadsworth F B, et al. Wetting and spreading of molten volcanic ash in jet engines [J]. J. Phys. Chem. Lett., 2017, 8: 1878
31
Li B T, Chen Z, Zheng H Z, et al. Wetting mechanism of CMAS melt on YSZ surface at high temperature: First-principles calculation [J]. Appl. Surf. Sci., 2019, 483: 811
32
Guo L, Xin H, Li Y Y, et al. Self-crystallization characteristics of calcium-magnesium-alumina-silicate (CMAS) glass under simulated conditions for thermal barrier coating applications [J]. J. Eur. Ceram. Soc., 2020, 40: 5683
33
Xu S M, Zhang X F, Liu M, et al. Oxidation resistance of Al-modified APS 7YSZ thermal barrier coating [J]. Mater. Rev., 2019, 33: 283
Wang X, Zhen Z, Huang G H, et al. Thermal cycling of EB-PVD TBCs based on YSZ ceramic coat and diffusion aluminide bond coat [J]. J. Alloys Compd., 2021, 873: 159720
35
Sampath S, Schulz U, Jarligo M O, et al. Processing science of advanced thermal-barrier systems [J]. MRS Bull., 2012, 37: 903
36
Hua Y F, Pan W, Li Z X, et al. Research progress of hot corrosion-resistance for thermal barrier coatings [J]. Rare Metal Mater. Eng., 2013, 42: 1976
Zhang X F, Zhou K S, Song J B, et al. Deposition and CMAS corrosion mechanism of 7YSZ thermal barrier coatings prepared by plasma spray-physical vapor deposition [J]. J. Inorg. Mater., 2015, 30: 287
Li D X, Jiang P, Gao R H, et al. Experimental and numerical investigation on the thermal and mechanical behaviours of thermal barrier coatings exposed to CMAS corrosion [J]. J. Adv. Ceram., 2021, 10: 551
39
Krämer S, Faulhaber S, Chambers M, et al. Mechanisms of cracking and delamination within thick thermal barrier systems in aero-engines subject to calcium-magnesium-alumino-silicate (CMAS) penetration [J]. Mater. Sci. Eng., 2008, A490: 26
40
Wu J, Guo H B, Gao Y Z, et al. Microstructure and thermo-physical properties of yttria stabilized zirconia coatings with CMAS deposits [J]. J. Eur. Ceram. Soc., 2011, 31: 1881
41
Steinke T, Sebold D, Mack D E, et al. A novel test approach for plasma-sprayed coatings tested simultaneously under CMAS and thermal gradient cycling conditions [J]. Surf. Coat. Technol., 2010, 205: 2287
42
Nicholls J R, Deakin M J, Rickerby D S. A comparison between the erosion behaviour of thermal spray and electron beam physical vapour deposition thermal barrier coatings [J]. Wear, 1999, 233-235: 352
43
Yan Z, Guo L, Li Z H, et al. Effects of laser glazing on CMAS corrosion behavior of Y2O3 stabilized ZrO2 thermal barrier coatings [J]. Corros. Sci., 2019, 157: 450
44
Li L, Hitchman N, Knapp J. Failure of thermal barrier coatings subjected to CMAS attack [J]. J. Therm. Spray Technol., 2010, 19: 148
45
Krämer S, Yang J, Levi C G, et al. Thermochemical interaction of thermal barrier coatings with molten CaO-MgO-Al2O3-SiO2(CMAS) deposits [J]. J. Am. Ceram. Soc., 2006, 89: 3167
46
Peng H, Wang L, Guo L, et al. Degradation of EB-PVD thermal barrier coatings caused by CMAS deposits [J]. Prog. Nat. Sci: Mater. Int., 2012, 22: 461
47
Wu J, Guo H B, Abbas M, et al. Evaluation of plasma sprayed YSZ thermal barrier coatings with the CMAS deposits infiltration using impedance spectroscopy [J]. Prog. Nat. Sci: Mater. Int., 2012, 22: 40
48
Yang S J, Peng H, Guo H B. Failure and protection of thermal barrier coating under CMAS attack [J]. J. Aeron. Mater., 2018, 38: 43
Hasz W C, Johnson C A, Borom M P. Protection of thermal barrier coating by a sacrificial surface coating [P]. USA Pat, 5660885, 1997
52
Hasz W C, Borom M P, Johnson C A. Protection of thermal barrier coating with an impermeable barrier coating [P]. USA Pat, 5871820, 1999
53
Hasz W C, Borom M P, Johnson C A. Protected thermal barrier coating composite with multiple coatings [P]. USA Pat, 6261643, 2001
54
Wang L, Guo L, Li Z M, et al. Protectiveness of Pt and Gd2Zr2O7 layers on EB-PVD YSZ thermal barrier coatings against calcium-magnesium-alumina-silicate (CMAS) attack [J]. Ceram. Int., 2015, 41: 11662
55
Liu H, Cai J, Zhu J H. CMAS (CaO-MgO-Al2O3-SiO2) resistance of Y2O3-stabilized ZrO2 thermal barrier coatings with Pt layers [J]. Ceram. Int., 2018, 44: 452
56
Zhang X F, Zhou K S, Wei X, et al. In situ synthesis of α-alumina layer at top yttrium-stabilized zirconia thermal barrier coatings for oxygen barrier [J]. Ceram. Int., 2014, 40: 12703
57
Zhang X F, Zhou K S, Xu W, et al. In situ synthesis of α-alumina layer on thermal barrier coating for protection against CMAS (CaO-MgO-Al2O3-SiO2) corrosion [J]. Surf. Coat. Technol., 2015, 261: 54
58
Zhang X F, Zhou K S, Xu W, et al. Reaction mechanism and thermal insulation property of Al-deposited 7YSZ thermal barrier coating [J]. J. Mater. Sci. Technol., 2015, 31: 1006
59
Zhang X F, Zhou K S, Liu M, et al. Enhanced properties of Al-modified EB-PVD 7YSZ thermal barrier coatings [J]. Ceram. Int., 2016, 42: 13969
60
Zhang X F, Zhou K S, Liu M, et al. Adsorbability and spreadability of calcium-magnesium-alumino-silicate (CMAS) on Al-modified 7YSZ thermal barrier coating [J]. Ceram. Int., 2016, 42: 19349
61
Zhang X F, Zhou K S, Liu, M, et al. Thermal shock analysis of surface Al-modified 7YSZ nano-thermal barrier coating [J]. J. Inorg. Mater., 2017, 32: 973
Guo Y Q, Wei L L, He Q, et al. PS-PVD alumina overlayer on thermal barrier coatings against CMAS attack [J]. J. Therm. Spray Technol., 2021, 30: 864
63
Ye F X, Yang W Q, Yan S, et al. The wettability and corrosion behaviors of CMAS on M-YTaO4 at 1350oC [J]. J. Therm. Spray Technol., 2021, 30: 873
64
Guo L, Li G, Gan Z L. Effects of surface roughness on CMAS corrosion behavior for thermal barrier coating applications [J]. J. Adv. Ceram., 2021, 10: 472
65
Wei X D, Hou G L, Zhao D, et al. Recent research progress on oxide doped YSZ thermal barrier coatings [J]. Surf. Technol., 2020, 49: 92
Shi Y, Li B W, Zhao M, et al. Growth of diopside crystals in CMAS glass-ceramics using Cr2O3 as a nucleating agent [J]. J. Am. Ceram. Soc., 2018, 101: 3968
67
Hsiang H I, Yung S W, Wang C C. Crystallization, densification and dielectric properties of CaO-MgO-Al2O3-SiO2 glass with ZrO2 as nucleating agent [J]. Mater. Res. Bull., 2014, 60: 730
68
Zhang X F, Wei H Y, Ouyang S L, et al. Effect of composite nucleation agents on microstructures and mechanical properties of CaO-MgO-Al2O3-SiO2 glass ceramics [J]. Mater. Rev., 2015, 29: 112
Webster R I, Opila E J. The effect of TiO2 additions on CaO-MgO-Al2O3-SiO2 (CMAS) crystallization behavior from the melt [J]. J. Am. Ceram. Soc., 2019, 102: 3354
70
Fang H J, Wang W Z, Huang J B, et al. Corrosion resistance and thermal-mechanical properties of ceramic pellets to molten calcium-magnesium-alumina-silicate (CMAS) [J]. Ceram. Int., 2019, 45: 19710
71
Guo L, Yan Z, Wang X H, et al. Ti2AlC MAX phase for resistance against CMAS attack to thermal barrier coatings [J]. Ceram. Int., 2019, 45: 7627
72
Yan Z, Guo L, Zhang Z, et al. Versatility of potential protective layer material Ti2AlC on resisting CMAS corrosion to thermal barrier coatings [J]. Corros. Sci., 2020, 167: 108532
73
Gong W B, Li R W, Li Y P, et al. Stabilization and corrosion resistance under high-temperature of nanostructured CeO2/ZrO2-Y2O3 thermal barrier coating [J]. Acta Metall. Sin., 2013, 49: 593
Guo S Q, Feng Y B, He Y, et al. Materials and fabrication technique of thermal barrier coatings for future aeroengines [J]. Surf. Technol., 2012, 41: 119
Vassen R, Cao X Q, Tietz F, et al. Zirconates as new materials for thermal barrier coatings [J]. J. Am. Ceram. Soc., 2000, 83: 2023
76
Ma W, Mack D, Malzbender J, et al. Yb2O3 and Gd2O3 doped strontium zirconate for thermal barrier coatings [J]. J. Eur. Ceram. Soc., 2008, 28: 3071
77
Ma W, Mack D E, Vaßen R, et al. Perovskite-type strontium zirconate as a new material for thermal barrier coatings [J]. J. Am. Ceram. Soc., 2008, 91: 2630
78
Guo L, Li M Z, Yang C X, et al. Calcium-magnesium-alumina-silicate (CMAS) resistance property of BaLn2Ti3O10 (Ln = La, Nd) for thermal barrier coating applications [J]. Ceram. Int., 2017, 43: 10521
79
Yu J X, Wang C M, Guo L, et al. Hot corrosion behavior of BaLa2Ti3O10 exposed to calcium-magnesium-alumina-silicate at elevated temperatures [J]. Ceram. Int., 2018, 44: 10220
80
Wan C L, Qu Z X, He Y, et al. Ultralow thermal conductivity in highly anion-defective aluminates [J]. Phys. Rev. Lett., 2008, 101: 085901
81
Wei L L, Guo L, Li M Z, et al. Calcium-magnesium-alumina-silicate (CMAS) resistant Ba2REAlO5 (RE = Yb, Er, Dy) ceramics for thermal barrier coatings [J]. J. Eur. Ceram. Soc., 2017, 37: 4991
82
Yu J X, Wang C M, Guo L, et al. Hot corrosion behavior of Ba2DyAlO5 exposed to calcium-magnesium-alumina-silicate at 1300oC and 1350°C [J]. Vacuum, 2018, 155: 307
83
Yang L X, Li W S, An G S, et al. Corrosion properties of LZO/8YSZ double ceramic thermal barrier coatings [J]. China Surf. Eng., 2020, 33: 91
Tang C H, Li G R, Liu M J, et al. Sintering-stiffening behavior of plasma sprayed La2Zr2O7 thermal barrier coatings during high temperature exposure [J]. China Surf. Eng., 2020, 33: 119
Zhu R B, Zou J P, Mao J, et al. Fabrication and growing kinetics of highly dispersed gadolinium zirconate nanoparticles [J]. Res. Appl. Mater. Sci., 2019, 1: 28
86
Krämer S, Yang J, Levi C G. Infiltration-inhibiting reaction of gadolinium zirconate thermal barrier coatings with CMAS melts [J]. J. Am. Ceram. Soc., 2008, 91: 576
87
Wang C M, Guo L, Zhang Y, et al. Enhanced thermal expansion and fracture toughness of Sc2O3-doped Gd2Zr2O7 ceramics [J]. Ceram. Int., 2015, 41: 10730
88
Guo L, Zhang Y, Zhao X X, et al. Thermal expansion and fracture toughness of (RE0.9Sc0.1)2Zr2O7 (RE = La, Sm, Dy, Er) ceramics [J]. Ceram. Int., 2016, 42: 583
89
Guo L, Li M Z, Zhang Y, et al. Improved toughness and thermal expansion of non-stoichiometry Gd2 - xZr2 + xO7 + x / 2 ceramics for thermal barrier coating application [J]. J. Mater. Sci. Technol., 2016, 32: 28
90
Wang C M, Guo L, Ye F X. LaPO4 as a toughening agent for rare earth zirconate ceramics [J]. Mater. Des., 2016, 111: 389
91
Li M Z, Cheng Y X, Guo L, et al. Preparation of nanostructured Gd2Zr2O7-LaPO4 thermal barrier coatings and their calcium-magnesium-alumina-silicate (CMAS) resistance [J]. J. Eur. Ceram. Soc., 2017, 37: 3425
92
Guo L, Li M Z, Cheng Y X, et al. Plasma sprayed nanostructured GdPO4 thermal barrier coatings: Preparation microstructure and CMAS corrosion resistance [J]. J. Am. Ceram. Soc., 2017, 100: 4209
93
Guo L, Yan Z, Li Z H, et al. GdPO4 as a novel candidate for thermal barrier coating applications at elevated temperatures [J]. Surf. Coat. Technol., 2018, 349: 400
94
Wang F, Guo L, Wang C M, et al. Calcium-magnesium-alumina-silicate (CMAS) resistance characteristics of LnPO4 (Ln = Nd, Sm, Gd) thermal barrier oxides [J]. J. Eur. Ceram. Soc., 2017, 37: 289
95
Guo L, Yan Z, Yu Y, et al. CMAS resistance characteristics of LaPO4/YSZ thermal barrier coatings at 1250oC-1350oC [J]. Corros. Sci., 2019, 154: 111
96
Zhang C L, Fei J M, Guo L, et al. Thermal cycling and hot corrosion behavior of a novel LaPO4/YSZ double-ceramic-layer thermal barrier coating [J]. Ceram. Int., 2018, 44: 8818
97
Guo L, Yan Z, Dong X, et al. Composition-microstructure-mechanical property relationships and toughening mechanisms of GdPO4-doped Gd2Zr2O7 composites [J]. Composites, 2019, 161B: 473
98
Guo L, Li M Z, He S X, et al. Preparation and hot corrosion behavior of plasma sprayed nanostructured Gd2Zr2O7-LaPO4 thermal barrier coatings [J]. J. Alloys Compd., 2017, 698: 13
99
Guo L, Xin H, Zhang Z, et al. Microstructure modification of Y2O3 stabilized ZrO2 thermal barrier coatings by laser glazing and the effects on the hot corrosion resistance [J]. J. Adv. Ceram., 2020, 9: 232
100
Guo L, Xin H, Zhang X M, et al. Effects of laser surface modification on phase stability and microstructures of thermal barrier coatings in V2O5 molten salt [J]. Surf. Technol., 2020, 49: 41
Kang Y X, Bai Y, Du G Q, et al. High temperature wettability between CMAS and YSZ coating with tailored surface microstructures [J]. Mater. Lett., 2018, 229: 40
102
Huang Z M, Zhou M, Li C, et al. Femtosecond laser on the surface of PTFE [J]. J. Funct. Mater., 2010, 41: 2163
Chen L Q, Gong S K, Xu H B. Influence of vertical cracks on failure mechanism of EB-PVD thermal barrier coatings during thermal cycling [J]. Acta. Metall. Sin., 2005, 41: 979
Ma W, Gong S K, Xu H B, et al. On improving the phase stability and thermal expansion coefficients of lanthanum cerium oxide solid solutions [J]. Scr. Mater., 2006, 54: 1505
107
Cao X Q, Vassen R, Stoever D. Ceramic materials for thermal barrier coatings [J]. J. Eur. Ceram. Soc., 2004, 24: 1
108
Gao L H, Guo H B, Gong S K, et al. Plasma-sprayed La2Ce2O7 thermal barrier coatings against calcium-magnesium-alumina-silicate penetration [J]. J. Eur. Ceram. Soc., 2014, 34: 2553
109
Dilba D. We've got protection covered [R]. AERO REPORT. Germany: MTU Aero Engines, 2017
HU Wangyu; GUAN Hengrong; SUN Xiaofeng; LI Shizhuo; FUKUMOTO Masahiro;OKANE Isao(Institute of Metal Research; The Chinese Academy of Sciences; Shenyang 110015)(Department of Applied Physics; Hunan University; Changsha 410082)(Toyobashi University of Technology Toyobashi; Japan)Correspondent: SUN Xiaofeng; associate profssor Tel: (024)23843531-55608; Fax: (024)23891320. THERMAL SHOCK BEHAVIOR OF ZrO_2/Ni GRADED THERMAL BARRIER COATINGS[J]. 金属学报, 1998, 34(10): 1104-1114.