Please wait a minute...
Acta Metall Sin  2021, Vol. 57 Issue (7): 831-844    DOI: 10.11900/0412.1961.2020.00376
Overview Current Issue | Archive | Adv Search |
A Review on the Development of the Heat Sink of the Fusion Reactor Divertor
PENG Wuqingliang1,2, LI Qiang1(), CHANG Yongqin3, WANG Wanjing1,2, CHEN Zhen1,2, XIE Chunyi1, WANG Jichao1, GENG Xiang1, HUANG Lingming1,2, ZHOU Haishan1,2, LUO Guangnan1,2
1.Institute of Plasma Physics, Hefei Institutes of Physical Science (HFIPS), Chinese Academy of Sciences, Hefei 230031, China
2.University of Science and Technology of China, Hefei 230026, China
3.School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
Cite this article: 

PENG Wuqingliang, LI Qiang, CHANG Yongqin, WANG Wanjing, CHEN Zhen, XIE Chunyi, WANG Jichao, GENG Xiang, HUANG Lingming, ZHOU Haishan, LUO Guangnan. A Review on the Development of the Heat Sink of the Fusion Reactor Divertor. Acta Metall Sin, 2021, 57(7): 831-844.

Download:  HTML  PDF(10400KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Divertor is one of the most important components of the magnetic confinement fusion device, which directly sustains the strong particle flow and high heat load during a harsh service circumstance. The heat sink material that accommodates the operation circumstance of the divertor is one of the crucial prerequisites to perform the normal operation of a fusion reactor. The research and engineering experiences over the past three decades indicate that copper alloys are the best and probably the only material group for the heat sink of the water-cooled target of a divertor owing to its high thermal conductivity, strength, thermal stability, and radiation resistance. However, on account of its performance under the typical irradiation scenario of a divertor in the next step fusion reactor, none of the existing commercial copper alloys can satisfy both the harsh working environment and engineering building requirements in the Chinese Fusion Engineering Test Reactor (CFETR). At present, the design and research of CFETR devices have been conducted and is progressing steadily according to the proposal. Therefore, the development of high-performance copper alloys or copper matrix composites for high heat flux components is essential. In this study, the working condition of the heat sink in the next step fusion reactor divertor was first introduced according to the Roadmap of Fusion Energy of China. Thus, the performance requirements for the heat sink and its potential application limitations in the future fusion reactor divertor were reviewed. Finally, certain countermeasures regarding the heat sink materials were proposed for the CFETR divertor.

Key words:  nuclear fusion      heat sink      copper alloy      plasma-facing component      divertor     
Received:  21 September 2020     
ZTFLH:  TG146.1  
Fund: National Natural Science Foundation of China(11875288)
About author:  LI Qiang, associate professor, Tel: (0551)65591507, E-mail: liqiang577@ipp.ac.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2020.00376     OR     https://www.ams.org.cn/EN/Y2021/V57/I7/831

Fig.1  Schematic view of ITER tungsten divertor (a), and schematic illustrations of vertical target plasma-facing units (PFUs) (b) and dome PFUs (c) (ITER—International Thermonuclear Experimental Reactor, OFCu—oxygen free copper)[11]
Fig.2  CAD model of the DEMO divertor cassette (a) and a target PFC mock-up with a schematic of the cross section (b) (CAD—computer aided design, DEMO—demonstration fusion power plant, PFC—plasma-facing component, ?in—inner diameter)[16]
Fig.3  Metallic elements with a thermal conductivity higher than 50 W/(m·K)[20]
Fig.4  Neutron irradiation effect on the thermal conductivity of GlidCop Al25 IG and CuCrZr IG alloys irradiated to 2 dpa at the temperatures (Tirr) of 150 and 300oC[17]
Fig.5  Radiation damage dose effect on the electrical resistivity of GlidCop Al25 IG and CuCrZr IG alloys irradiated at the temperatures of 150 and 300oC[17]
Fig.6  Effect of neutron irradiation on initiation fracture toughness (J0.2BL) of CuAl25 IG0 (a) and CuCrZr (b) alloys (SE(B)—single edge bend, SG—side groove, Ttest—test temperature)[44]
Fig.7  Radiation damage dose effect on the uniform elongation of CuCrZr IG (a) and CuAl25 IG (b) alloys (CR + ann—cross-rolled and annealed at 1000oC, 1 h; SA + aged—solution annealing at 980°C, 1 h, and ageing at 480°C, 4 h)[17]
Fig.8  Composition before (black) and after (red) of CuCrZr (a) and Glidcop (b) following a typical irradiation scenario for a divertor in DEMO (appm—atomic parts per million)[26]
Fig.9  Irradiation-induced volumetric swelling in pure copper and copper alloys at about 400oC (DS—dispersion strength)[46]
Fig.10  Equilibrated temperature fields in the pipe of the EU DEMO (ITER-like) PFCs model under three specified HHF loads (left column) and the corresponding thermal stress fields (hoop component) during the HHF loading (middle column) and in the cooling phase at 150oC (right column) (HHF—high heat flux)[49]
Position at the pipe10 MW·m-215 MW·m-220 MW·m-2
Outer interface (top)301376432
Inner wall (top)240284304
Outer interface (side)186204228
Inner wall (side)173184200
Interface (bottom)150150150
Table 1  Steady state temperatures of the cooling pipe of the EU DEMO PFCs model at selected positions[49]
Fig.11  The yield strength of several copper alloys as a function of temperature[50] (SAA—solution-annealed and aged condition, SA + CW + A—solution-annealed, cold-worked and aged condition, HT—heat treatment, AT—aged treatment)
Fig.12  Yield strength (σy/ E', corrected for temperature-dependent elastic modulus E′) vs reciprocal temperature for several copper alloys[51]
Fig.13  Steady state thermal creep laws for several copper alloy[52]
Fig.14  Temperature dependence of the fracture toughness of several copper alloys[51]
Fig.15  Effects of fission neutron irradiation and test temperature on uniform elongation (eU) and fracture toughness of CuCrZr[51]
Fig.16  Effect of anneal temperature (holding time of 2 h) on tensile and yield strength of CuCrZr alloy [57]
1 Barbarino M. A brief history of nuclear fusion [J]. Nat. Phys., 2020, 16: 890
2 Knaster J, Moeslang A, Muroga T. Materials research for fusion [J]. Nat. Phys., 2016, 12: 424
3
4 Wan Y X, Li J G, Liu Y, et al. Overview of the present progress and activities on the CFETR [J]. Nucl. Fusion, 2017, 57: 102009
5 Li J G, Wan Y X. Present state of Chinese magnetic fusion development and future plans [J]. J. Fusion Energy, 2019, 38: 113
6 Wang L. Experimental Physics of Magnetic Confinement Plasmas [M]. Beijing: Science Press, 2018: 488
王 龙. 磁约束等离子体实验物理 [M]. 北京: 科学出版社, 2018: 488
7 Qiu L J. Fusion Energy Applications [M]. Beijing: Science Press, 2008: 204
邱励俭. 聚变能及其应用 [M]. 北京: 科学出版社, 2008: 204
8 Federici G, Skinner C H, Brooks J N, et al. Plasma-material interactions in current tokamaks and their implications for next step fusion reactors [J]. Nucl. Fusion, 2001, 41: 1967
9 Bolt H, Barabash V, Krauss W, et al. Materials for the plasma-facing components of fusion reactors [J]. J. Nucl. Mater., 2004, 329-333: 66
10 Raffray A R, Nygren R, Whyte D G, et al. High heat flux components—Readiness to proceed from near term fusion systems to power plants [J]. Fusion Eng. Des., 2010, 85: 93
11 Hirai T, Barabash V, Escourbiac F, et al. ITER divertor materials and manufacturing challenges [J]. Fusion Eng. Des., 2017, 125: 250
12 You J H. A review on two previous divertor target concepts for DEMO: Mutual impact between structural design requirements and materials performance [J]. Nucl. Fusion, 2015, 55: 113026
13 Federici G, Kemp R, Ward D, et al. Overview of EU DEMO design and R&D activities [J]. Fusion Eng. Des., 2014, 89: 882
14 Gilbert M R, Dudarev S L, Zheng S, et al. An integrated model for materials in a fusion power plant: Transmutation, gas production, and helium embrittlement under neutron irradiation [J]. Nucl. Fusion, 2012, 52: 083019
15 You J H, Mazzone G, Visca E, et al. Conceptual design studies for the European DEMO divertor: Rationale and first results [J]. Fusion Eng. Des., 2016, 109-111: 1598
16 You J H, Mazzone G, Bachmann C, et al. Progress in the initial design activities for the European DEMO divertor: Subproject “Cassette” [J]. Fusion Eng. Des., 2017, 124: 364
17 Fabritsiev S A, Pokrovsky A S. Effect of high doses of neutron irradiation on physico-mechanical properties of copper alloys for ITER applications [J]. Fusion Eng. Des., 2005, 73: 19
18 Singheiser L, Hirai T, Linke J, et al. Plasma-facing materials for thermo-nuclear fusion devices [J]. Trans. Indian Inst. Met., 2009, 62: 123
19 Li M Y, Werner E, You J H. Low cycle fatigue behavior of ITER-like divertor target under DEMO-relevant operation conditions [J]. Fusion Eng. Des., 2015, 90: 88
20 You J H. Copper matrix composites as heat sink materials for water-cooled divertor target [J]. Nucl. Mater. Energy, 2015, 5: 7
21 Mergia K, Boukos N. Structural, thermal, electrical and magnetic properties of Eurofer 97 steel [J]. J. Nucl. Mater., 2008, 373: 1
22 Tavassoli A A F, Rensman J W, Schirra M, et al. Materials design data for reduced activation martensitic steel type F82H [J]. Fusion Eng. Des., 2002, 61-62: 617
23 Ren C, Fang Z Z, Koopman M, et al. Methods for improving ductility of tungsten—A review [J]. Int. J. Refract. Met. Hard Mater., 2018, 75: 170
24 Obitz C, Öijerholm J, Wikman S, et al. Erosion corrosion of CuCrZr specimens exposed for simulated ITER operational conditions [J]. Nucl. Mater. Energy, 2016, 9: 261
25 Maviglia F, Federici G, Strohmayer G, et al. Limitations of transient power loads on DEMO and analysis of mitigation techniques [J]. Fusion Eng. Des., 2016, 109-111: 1067
26 Ueda Y, Schmid K, Balden M, et al. Baseline high heat flux and plasma facing materials for fusion [J]. Nucl. Fusion, 2017, 57: 092006
27 ITER Organization. ITER material assessment report: 1.4. Selection of copper alloys [R]. G 74 MA 10 01-07-11 W0.2, 2001
28 Barabash V. Summary of materials properties for structural analysis of the ITER internal components [R]. ITER_D_23HL7T V 3.2, 2009
29 Xiang Z Q. A study on microstructures and high-temperature mechanical properties of Cu-Al2O3 dispersion strengthened copper [D]. Changsha: Central South University, 2014
向紫琪. Cu-Al2O3弥散强化铜合金的组织和高温力学性能研究 [D]. 长沙: 中南大学, 2014
30 Zhang J, Chang Y Q, Guo Z M, et al. Microstructure and nano-hardness of pure copper and ODS copper alloy under Au Ions irradiation at room temperature [J]. Acta. Metall. Sin. (Engl. Lett.), 2016, 29: 1047
31 Butterworth G J, Forty C B A. A survey of the properties of copper alloys for use as fusion reactor materials [J]. J. Nucl. Mater., 1992, 189: 237
32 Groza J R, Gibeling J C. Principles of particle selection for dispersion strengthened copper [J]. Mater. Sci. Eng., 1993, A171: 115
33 Ogbuji L U. The oxidation behavior of an ODS copper alloy Cu-Al2O3 [J]. Oxid. Met., 2004, 62: 141
34 Lee J, Kim Y C, Lee S, et al. Correlation of the microstructure and mechanical properties of oxide-dispersion-strengthened coppers fabricated by internal oxidation [J]. Metall. Mater. Trans., 2004, 35A: 493
35 Morrison A. Powder based processing of novel dispersion strengthened copper alloys for fusion applications [D]. Boston: University of Oxford, 2017
36 Fathy A, El-Kady O. Thermal expansion and thermal conductivity characteristics of Cu-Al2O3 nanocomposites [J]. Mater. Des., 2013, 46: 355
37 Kimmig S, Allen I, You J H. Strength and conductivity of unidirectional copper composites reinforced by continuous SiC fibers [J]. J. Nucl. Mater., 2013, 440: 272
38 Neu R, Riesch J, Müller A V, et al. Tungsten fibre-reinforced composites for advanced plasma facing components [J]. Nucl. Mater. Energy, 2017, 12: 1308
39 Wang P R, Liu F Q, Wang H, et al. A review of third generation SiC fibers and SiCf/SiC composites [J]. J. Mater. Sci. Technol., 2019, 35: 2743
40 You J H, Brendel A, Nawka S, et al. Thermal and mechanical properties of infiltrated W/CuCrZr composite materials for functionally graded heat sink application [J]. J. Nucl. Mater., 2013, 438: 1
41 Coenen J W, Mao Y, Sistla S, et al. Materials development for new high heat-flux component mock-ups for DEMO [J]. Fusion Eng. Des., 2019, 146: 1431
42 Kelly A, Zweben C. Comprehensive Composite Materials [M]. Amsterdam: Elsevier, 2000, 371
43 Zinkle S J, Fabritsiev S A. Copper-alloys for high heat-flux structure applications [J]. Nucl. Fusion, 1994, 5(suppl.): 163
44 Tähtinen S, Pyykkönen M, Roikonen P K, et al. Effect of neutron irradiation on fracture toughness behaviour of copper alloys [J]. J. Nucl. Mater., 1998, 258-263: 1010
45 Fabritsiev S A, Pokrovsky A S. Effect of irradiation temperature on microstructure, radiation hardening and embrittlement of pure copper and copper-based alloy [J]. J. Nucl. Mater., 2007, 367-370: 977
46 Fabritsiev S A, Zinkle S J, Singh B N. Evaluation of copper alloys for fusion reactor divertor and first wall components [J]. J. Nucl. Mater., 1996, 233-237: 127
47 Brager H R. Effects of neutron irradiation to 63 dpa on the properties of various commercial copper alloys [J]. J. Nucl. Mater., 1986, 141-143: 79
48 Brager H R, Heinisch H L, Garner F A. Effects of neutron irradiation at 450℃ and 16 dpa on the properties of various commercial copper alloys [J]. J. Nucl. Mater., 1985, 133-134: 676
49 You J H, Visca E, Barrett T, et al. European divertor target concepts for DEMO: Design rationales and high heat flux performance [J]. Nucl. Mater. Energy, 2018, 16: 1
50 Li M, Zinkle S J. Physical and mechanical properties of copper and copper alloys [J]. Compre. Nucl. Mater., 2012, 4: 667
51 Zinkle S J. Applicability of copper alloys for DEMO high heat flux components [J]. Phys. Scr., 2016, 2016: 014004
52 Li G, Thomas B G, Stubbins J F. Modeling creep and fatigue of copper alloy [J]. Metall. Mater. Trans., 2000, 31A: 2491
53 De Groh III H C, Ellis D L, Loewenthal W S. Comparison of GRCop-84 to other Cu alloys with high thermal conductivities [J]. J. Mater. Eng. Perform., 2008, 17: 594
54 Aitkhozhin E S, Chumakov E V. Radiation-induced creep of copper, aluminium and their alloys [J]. J. Nucl. Mater., 1996, 233-237: 537
55 Pokrovsky A S, Fabritsiev S A, Barabash V R, et al. Irradiation-induced low-temperature creep of DS copper alloy [J]. Plasma Devices Oper., 1999, 7: 313
56 Kalinin G, Matera R. Comparative analysis of copper alloys for the heat sink of plasma facing components in ITER [J]. J. Nucl. Mater., 1998, 258-263: 345
57 Li Q, Zhao S X, Sun Z X, et al. Development and application of W/Cu flat-type plasma facing components at ASIPP [J]. Phys. Scr., 2017, 2017: 014020
58 Wang P Y, Feng Y, Chen H D, et al. Study on high temperature mechanical properties and softening behavior of Al2O3 dispersion strengthened copper alloy rod [J]. Dev. Appl. Mater., 2017, 32(3): 46
王鹏云, 冯 岩, 陈会东等. Al2O3弥散强化铜棒材高温力学性能与软化行为研究 [J]. 材料开发与应用, 2017, 32(3): 46
59 Dong S J, Kelkar G P, Zhou Y. Electrode sticking during micro-resistance welding of thin metal sheets [J]. IEEE Trans. Electron. Pack. Manuf., 2002, 25: 355
60 Li M Y, Wang H, Guo Y H, et al. Microstructures and mechanical properties of the novel CuCrZrFeTiY alloy for fusion reactor [J]. J. Nucl. Mater., 2020, 532: 152063
61 Aghamiri S M S, Oono N, Ukai S, et al. Microstructure and mechanical properties of mechanically alloyed ODS copper alloy for fusion material application [J]. Nucl. Mater. Energy, 2018, 15: 17
62 Zhou D S, Geng H W, Zeng W, et al. High temperature stabilization of a nanostructured Cu-Y2O3 composite through microalloying with Ti [J]. Mater. Sci. Eng., 2018, A712: 80
63 Zhuo H O, Tang J C, Ye N, et al. A novel approach for strengthening Cu-Y2O3 composites by in situ reaction at liquidus temperature [J]. Mater. Sci. Eng., 2013, A584: 1
64 Muller A V, Ewert D, Galatanu A, et al. Melt infiltrated tungsten-copper composites as advanced heat sink materials for plasma facing components of future nuclear fusion devices [J]. Fusion Eng. Des., 2017, 124: 455
65 Domptail F, Barrett T R, Fursdon M, et al. The design and optimisation of a monoblock divertor target for DEMO using thermal break interlayer [J]. Fusion Eng. Des., 2020, 154: 111497
66 Li Q, Xie C Y, Wang W J, et al. Optimization of W/Cu monoblock mock-up with FGM interlayer for CFETR devertor targets [J]. Fusion Eng. Des., 2019, 147: 111262
[1] LIU Wei, CHEN Wanqi, MA Menghan, LI Kailun. Review of Irradiation Damage Behavior of Tungsten Exposed to Plasma in Nuclear Fusion[J]. 金属学报, 2023, 59(8): 986-1000.
[2] CHEN Kaixuan, LI Zongxuan, WANG Zidong, Demange Gilles, CHEN Xiaohua, ZHANG Jiawei, WU Xuehua, Zapolsky Helena. Morphological Evolution of Fe-Rich Precipitates in a Cu-2.0Fe Alloy During Isothermal Treatment[J]. 金属学报, 2023, 59(12): 1665-1674.
[3] Yucheng WU. Research Progress in Irradiation Damage Behavior of Tungsten and Its Alloys for Nuclear Fusion Reactor[J]. 金属学报, 2019, 55(8): 939-950.
[4] Hongbo ZHOU, Yuhao LI, Guanghong LU. Modeling and Simulation of Hydrogen Behavior in Tungsten[J]. 金属学报, 2018, 54(2): 301-313.
[5] Zhisheng WANG, Xiang CHEN, Yanxiang LI, Huawei ZHANG, Yuan LIU. EFFECTS OF B ON HIGH TEMPERATURE MECHA-NICAL PROPERTIES AND THERMAL FATIGUE BEHAVIOR OF COPPER DIE-CASTING DIE STEEL[J]. 金属学报, 2015, 51(5): 519-526.
[6] SUN Feilong, LI Xiaogang, LU Lin, WAN Hongxia, DU Cuiwei, LIU Zhiyong. CORROSION BEHAVIOR OF COPPER ALLOYS IN DEEP OCEAN ENVIRONMENT OF SOUTH CHINA SEA[J]. 金属学报, 2013, 49(10): 1211-1218.
[7] CHEN Liutao ZHANG Huawei LIU Yuan LI Yanxiang. EXPERIMENTAL RESEARCH ON HEAT TRANSFER PERFORMANCE OF DIRECTIOANLLY SOLIDIFIED POROUS COPPER HEAT SINK[J]. 金属学报, 2012, 48(3): 329-333.
[8] CHEN Liutao ZHANG Huawei LIU Yuan LI Yanxiang. THEORETICAL STUDY ON HEAT TRANSFER PERFORMANCE OF DIRECTIOANLLY SOLIDIFIED POROUS COPPER HEAT SINK[J]. 金属学报, 2012, 48(11): 1374-1380.
[9] YANG Xuyue ZHANG Zhiling WANG Jun QIN Jia CHEN Zhiyong. PREPARATION OF ULTRAFINE–GRAINED COPPER ALLOY PROCESSED BY ANNEALING TREATMENT AFTER MULTI–DIRECTIONAL COMPRESSION[J]. 金属学报, 2011, 47(12): 1561-1566.
[10] WANG Jihui; JIANG Xiaoxia; LI Shizhuo (Institute of Metal Research; The Chinese Academy of Sciences; Shenyang 110015). CORROSIVE WEAR BEHAVIOR OF COPPER ALLOYS IN 3.5% NaCl+NH_3(NH_4~+) SOLUTION[J]. 金属学报, 1997, 33(12): 1268-1274.
[11] XIE Cunyi;WEN Yiting;ZHU Xianfang Institute of Solid State Physics; Academia Sinica; Hefei. INTERNAL FRICTION ASSOCIATED WITH MARTENSITIC TRANSFORMATION OF ASCAST MANGANESE-COPPER ALLOYS[J]. 金属学报, 1988, 24(2): 71-75.
No Suggested Reading articles found!