Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (11): 1374-1380    DOI: 10.3724/SP.J.1037.2012.00271
Current Issue | Archive | Adv Search |
THEORETICAL STUDY ON HEAT TRANSFER PERFORMANCE OF DIRECTIOANLLY SOLIDIFIED POROUS COPPER HEAT SINK
CHEN Liutao, ZHANG Huawei, LIU Yuan, LI Yanxiang
Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Department of Mechanical Engineering, Tsinghua University, Beijing 100084
Cite this article: 

CHEN Liutao ZHANG Huawei LIU Yuan LI Yanxiang. THEORETICAL STUDY ON HEAT TRANSFER PERFORMANCE OF DIRECTIOANLLY SOLIDIFIED POROUS COPPER HEAT SINK. Acta Metall Sin, 2012, 48(11): 1374-1380.

Download:  PDF(958KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Porous copper with long cylindrical pores fabricated by unidirectional solidification of metal-gas eutectic system can be used to manufacture a special kind of micro-channel heat sink. In order to simplify the heat transfer analysis, a fin model was introduced into the theoretical study on heat transfer performance of directionally solidified porous copper heat sink. The heat transfer performance of porous copper heat sink was also tested by experiments, and it was found that experimental values are far less than theoretical predicted ones. That is because the structure of porous copper might deviate from its ideal structure, such as, some pores are not penetrated, and the distribution of pore size and pore location is not uniform. After the model was modified by introducing area ratio of penetrating pores and mean diameter of penetrating pores, the theoretical results were consistent with the experimental results. Thus the analytical method based on the fin model in this paper can be used to predict the heat transfer performance of directionally solidified porous copper heat sink. According to the theoretical analysis, porous copper used for heat sink with excellent heat transfer performance should have the following porous structure: the pore diameter is 0.1-0.6 mm, the porosity is 30%-70%, the height of porous copper is more than 4 mm when its length along the direction of pore axis is 20 mm.

Key words:  heat sink      micro-channel cooling      porous metal      metal-gas eutectic      directional solidification     
Received:  14 May 2012     
Fund: 

Supported by National Natural Science Foundation of China (Nos.u0837603 and 51101092)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00271     OR     https://www.ams.org.cn/EN/Y2012/V48/I11/1374

[1] Mahajan R, Nair R, Wakharkar V, Swan J, Tang J, Vandentop G. Int Technol J Semicond Technol Manuf, 2002; 6: 61

[2] Tuckerman D B, Pease R F W. IEEE Electron Dev Lett, 1981; 2: 126

[3] Rosa P, Karayiannis T G, Collins M W. Appl Therm Eng, 2009; 29: 3447

[4] Wei X J. J Electron Packag, 2004; 126: 60

[5] Ogushi T, Chiba H, Nakajima H, Ikeda T. J Appl Phys, 2004; 95: 5843

[6] Chiba H, Ogushi T, Nakajima H, Torji K, Tomimura T, Ono F. J Appl Phys, 2008; 103: 013515

[7] Liu Y, Li Y X, Zhang H W, Wang J. Acta Metall Sin, 2005; 41: 886

(刘源, 李言祥, 张华伟, 万疆. 金属学报, 2005; 41: 886)

[8] Liu Y, Li Y X, Wan J, Zhang H W. Mater Sci Eng, 2005; A402: 47

[9] Zhang H W, Li Y X, Liu Y. Acta Metall Sin, 2006; 42: 1165

(张华伟, 李言祥, 刘源. 金属学报, 2006; 42: 1165)

[10] Li Y X, Liu Y, Zhang H W, Wang X. In: Nakajima H, Kanetake N eds., Proc Met Foam 2005, Sendai: The Japan Institute of Metals, 2006: 237

[11] Zhang H W, Li Y X, Liu Y. Acta Metall Sin, 2006; 42: 1171

(张华伟, 李言祥, 刘 源. 金属学报, 2006; 42: 1171)

[12] Wang X, Li Y X, Liu Y. Acta Metall Sin, 2006; 42: 1075

(王雪, 李言祥, 刘源. 金属学报, 2006; 42: 1075)

[13] Ogushi T, Chiba H, Nakajima H. In: Nakajima H, Kanetake N eds., Proc Met Foam 2005, Sendai: The Japan Institute of Metals, 2006: 27

[14] Chiba H, Ogushi T, Nakajima H. In: Nakajima H, KanetakeN eds., Proc Met Foam 2005, Sendai: The Japan Institute of Metals, 2006: 35

[15] Chen L T, Zhang H W, Liu Y, Li Y X. Acta Metall Sin, 2012: 48: 329

(陈刘涛, 张华伟, 刘源, 李言祥. 金属学报, 2012: 48: 329)

[16] Yang S M, Tao W Q. Heat Transfer. 4th Ed, Beijing: Higher Education Press, 2006: 57

(杨世铭, 陶文铨. 传热学. 第4版, 北京: 高等教育出版社, 2006: 57)

[17] Shah R K, London A L. Laminar Flow Forced Convection In Ducts. New York: Academic Press, 1978: 148

[18] Li X Q, Li Y, Ding T. Engineering Fluid Mechanics. Beijing: China Water Power Press, 2009: 120

(李小芹, 李 岩, 丁 涛. 工程流体力学. 北京: 中国水利水电出版社, 2009: 120)

[1] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[3] SU Zhenqi, ZHANG Congjiang, YUAN Xiaotan, HU Xingjin, LU Keke, REN Weili, DING Biao, ZHENG Tianxiang, SHEN Zhe, ZHONG Yunbo, WANG Hui, WANG Qiuliang. Formation and Evolution of Stray Grains on Remelted Interface in the Seed Crystal During the Directional Solidification of Single-Crystal Superalloys Assisted by Vertical Static Magnetic Field[J]. 金属学报, 2023, 59(12): 1568-1580.
[4] LI Yanqiang, ZHAO Jiuzhou, JIANG Hongxiang, HE Jie. Microstructure Formation in Directionally Solidified Pb-Al Alloy[J]. 金属学报, 2022, 58(8): 1072-1082.
[5] XU Wence, CUI Zhenduo, ZHU Shengli. Recent Advances in Open-Cell Porous Metal Materials for Electrocatalytic and Biomedical Applications[J]. 金属学报, 2022, 58(12): 1527-1544.
[6] CHEN Ruirun, CHEN Dezhi, WANG Qi, WANG Shu, ZHOU Zhecheng, DING Hongsheng, FU Hengzhi. Research Progress on Nb-Si Base Ultrahigh Temperature Alloys and Directional Solidification Technology[J]. 金属学报, 2021, 57(9): 1141-1154.
[7] PENG Wuqingliang, LI Qiang, CHANG Yongqin, WANG Wanjing, CHEN Zhen, XIE Chunyi, WANG Jichao, GENG Xiang, HUANG Lingming, ZHOU Haishan, LUO Guangnan. A Review on the Development of the Heat Sink of the Fusion Reactor Divertor[J]. 金属学报, 2021, 57(7): 831-844.
[8] ZHANG Xiaoli, FENG Li, YANG Yanhong, ZHOU Yizhou, LIU Guiqun. Influence of Secondary Orientation on Competitive Grain Growth of Nickel-Based Superalloys[J]. 金属学报, 2020, 56(7): 969-978.
[9] XU Xiuyue, LI Yanhui, ZHANG Wei. Fabrication of Nanoporous PtRuFe by Dealloying Amorphous Fe(Pt, Ru)B Ribbons and Their Methanol Electrocatalytic Properties[J]. 金属学报, 2020, 56(10): 1393-1400.
[10] ZHANG Jian,WANG Li,WANG Dong,XIE Guang,LU Yuzhang,SHEN Jian,LOU Langhong. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2019, 55(9): 1077-1094.
[11] XU Qingyan,YANG Cong,YAN Xuewei,LIU Baicheng. Development of Numerical Simulation in Nickel-Based Superalloy Turbine Blade Directional Solidification[J]. 金属学报, 2019, 55(9): 1175-1184.
[12] Hui FANG,Hua XUE,Qianyu TANG,Qingyu ZHANG,Shiyan PAN,Mingfang ZHU. Dendrite Coarsening and Secondary Arm Migration in the Mushy Zone During Directional Solidification:[J]. 金属学报, 2019, 55(5): 664-672.
[13] Yan YANG, Guangyu YANG, Shifeng LUO, Lei XIAO, Wanqi JIE. Microstructures and Growth Orientation of Directionally Solidification Mg-14.61Gd Alloy[J]. 金属学报, 2019, 55(2): 202-212.
[14] JIN Hao, JIA Qing, LIU Ronghua, XIAN Quangang, CUI Yuyou, XU Dongsheng, YANG Rui. Seed Preparation and Orientation Control of PST Crystals of Ti-47Al Alloy[J]. 金属学报, 2019, 55(12): 1519-1526.
[15] Yanxiang LI, Xiaobang LIU. Directionally Solidified Porous Metals: A Review[J]. 金属学报, 2018, 54(5): 727-741.
No Suggested Reading articles found!