Please wait a minute...
Acta Metall Sin  2021, Vol. 57 Issue (12): 1607-1613    DOI: 10.11900/0412.1961.2020.00426
Research paper Current Issue | Archive | Adv Search |
Influence of Potentionstatic Pulse Technique on Pitting Behavior and Pitting Resistance of 317L Stainless Steel
LV Chenxi1,2, SUN Yangting1(), CHEN Bin1, JIANG Yiming1, LI Jin1
1.Department of Materials Science, Fudan University, Shanghai 200433, China
2.Institute of Metal Research, Chinses Academy of Sciences, Shenyang 110016, China
Cite this article: 

LV Chenxi, SUN Yangting, CHEN Bin, JIANG Yiming, LI Jin. Influence of Potentionstatic Pulse Technique on Pitting Behavior and Pitting Resistance of 317L Stainless Steel. Acta Metall Sin, 2021, 57(12): 1607-1613.

Download:  HTML  PDF(1369KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The potentionstatic pulse technique (PPT) has been widely used as a new electrochemical method in research of stainless-steel corrosion. In addition to the susceptibility detection of stainless steel, PPT has also been recently applied in research of pitting corrosion. The influence of PPT parameters on pitting behavior of 317L stainless steel is studied using electrochemical measurements and optical microscopy. This investigation reveals the effect of high potential (Eh) parameters on pitting behavior in samples. The results show that when Eh is in the range of the passivation potential, pits will not occur. When Eh is applied in the pitting potential range, the size and number of pits first increase and then stabilize. When Eh is in the range of the transpassivation potential, the sample can not maintain the passive condition. In addition, potentiodynamic polarization tests show that the pitting potential and re-passivation potential of PPT test samples increase, indicating that the pitting resistance of 317L stainless steel can be enhanced by the PPT test. Therefore, the PPT can be used as a surface modification method to improve pitting corrosion resistance of stainless steel after selecting appropriate parameters.

Key words:  potentionstatic pulse technique      stainless steel      passive film      pitting corrosion     
Received:  26 October 2020     
ZTFLH:  TG172.3  
Fund: National Natural Science Foundation of China(51901046);Strategic Priority Research Program of the Chinese Academy of Science(XDA13040502)
About author:  SUN Yangting, Tel: (021)31243648, E-mail: sunyangting@fudan.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2020.00426     OR     https://www.ams.org.cn/EN/Y2021/V57/I12/1607

Fig.1  Schematics of potentiostatic pulse technique (PPT) test (a) and the corresponding current-time curve (b) (Eh—higher potential, El—lower potential, th—higher potential duration, tl—lower potential duration, t—total duration)
Fig.2  Current density-time curves of PPT test under Eh of 0.4 V (a), 0.6 V (b), 0.8 V (c), 1.0 V (d), and 1.2 V (e)
Fig.3  OM images of 317L stainless steel (317LSS) after PPT test under Eh of 0.4 V (a), 0.6 V (b), 0.8 V (c), 1.0 V (d), and 1.2 V (e)
Fig.4  Overall OM images of 317LSS after PPT test under Eh of 0.6 V (a), 0.8 V (b), and 1.0 V (c)
Fig.5  Size distribution of pits of 317LSS after PPT test under Eh of 0.6 V, 0.8 V, and 1.0 V
EhNumber

Area ratio

%

Average area

μm2

Average

diameter

μm

Distribution of

diameter

V
0.6210.024145.5311.914.78
0.8390.068228.3215.635.18
1.0420.067203.0914.225.70
Table 1  Statistical results of pits of 317LSS after PPT test under different Eh
Fig.6  Potentiodynamic polarization curves of different test conditions
Exposure conditionEp / mVAverageDistribution
1st2nd3rd4thmV
Diameter of 10 mm598582503453534.0068.12
Diameter of 10 mm685531590451564.2598.61
after PPT measurement
Diameter of 4 mm983734531898786.50199.23
Tabel 2  Statistical results of pitting potential (Ep)
Fig.7  Cyclic voltammetry curves of 317LSS after PPT measurement (Eh = 0.6 V) and without PPT measurement
1 Sun Y T, Liu X R, Jiang Y M, et al. Recent advances and challenges in divalent and multivalent metal electrodes for metal-air batteries [J]. J. Mater. Chem., 2019, 7A: 18183
2 Lei L L, Sun Y T, Wang X Y, et al. Strategies to enhance corrosion resistance of Zn electrodes for next generation batteries [J]. Front. Mater., 2020, 7: 96
3 Esmaily M, Svensson J E, Fajardo S, et al. Fundamentals and advances in magnesium alloy corrosion [J]. Prog. Mater. Sci., 2017, 89: 92
4 Shi Y Z, Yang B, Liaw P K. Corrosion-resistant high-entropy alloys: A review [J]. Metals, 2017, 7(2): 43
5 Zhang Z Y, Zhang H Z, Zhao H, et al. Effect of prolonged thermal cycles on the pitting corrosion resistance of a newly developed LDX 2404 lean duplex stainless steel [J]. Corros. Sci., 2016, 103: 189
6 Loto R T. Comparative study of the pitting corrosion resistance, passivation behavior and metastable pitting activity of NO7718, NO7208 and 439L super alloys in chloride/sulphate media [J]. J. Mater. Res. Technol., 2019, 8: 623
7 Soltis J. Passivity breakdown, pit initiation and propagation of pits in metallic materials—Review [J]. Corros. Sci., 2015, 90: 5
8 Zhang Z Y, Zhao H, Zhang H Z, et al. Microstructure evolution and pitting corrosion behavior of UNS S32750 super duplex stainless steel welds after short-time heat treatment [J]. Corros. Sci.,2017, 121: 22
9 Milchev A, Michailova E. Studies of electrochemical nucleation by means of standard and modified pulse potentiostatic techniques [J]. Electrochem. Commun., 2000, 2: 15
10 Erazmus-Vignal P, Vignal V, Saedlou S, et al. Corrosion behaviour of sites containing (Cr, Fe)2N particles in thermally aged duplex stainless steel studied using capillary techniques, atomic force microscopy and potentiostatic pulse testing method [J]. Corros. Sci., 2015, 99: 194
11 Liu Y P, Zhong N, Sun Y T, et al. Effect of short term aging on microstructure evolution, pitting and intergranular corrosion behaviour of UNS31254 [J]. Int. J. Electrochem. Sci., 2016, 11: 3908
12 Xu J L, Deng B, Sun T, et al. Evaluation of the susceptibility to intergranular attack of 2205 duplex stainless steel by DL-EPR method [J]. Acta Metall. Sin., 2010, 46: 380
徐菊良, 邓 博, 孙 涛等. DL-EPR法评价2205双相不锈钢晶间腐蚀敏感性 [J]. 金属学报, 2010, 46: 380
13 Martin U, Ress J, Bosch J, et al. Evaluation of the DOS by DL-EPR of UNSM processed inconel 718 [J]. Metals, 2020, 10: 204
14 Liu C Y, Wu Q S, Chen S H, et al. Detection of sensitization of austenitic stainless steel using potentiostatic pulse test [J]. J. Chin. Soc. Corros. Prot., 1994, 14: 291
柳昌义, 吴全胜, 陈慎豪等. 恒电位脉冲法检测奥氏体不锈钢敏化 [J]. 中国腐蚀与防护学报, 1994, 14: 291
15 Jiang H R, Zhang J P, Cheng X L, et al. Potentiostatic pulse test for detecting sensitization of high purity ferritic stainless steel [J]. J. Shandong Univ. (Sci. Ed.), 1999, 34(1): 78
姜宏日, 张吉平, 程晓亮等. 恒电位脉冲法检测高纯铁素体不锈钢的敏化 [J].山东大学学报(自然科学版),1999, 34(1): 78
16 Zhang S H, Ding Z Y, Wang X M. Potentiostatic pulse test for detecting sensitization of steam turbine rotor stainless steel [J]. Turbine Technol., 2007, 49: 312
张胜寒, 丁兆勇, 王秀梅. 恒电位脉冲法检测汽轮机转子钢的敏化 [J]. 汽轮机技术, 2007, 49: 312
17 Gao J, Jiang Y M, Bo D, et al. Determination of pitting initiation of duplex stainless steel using potentiostatic pulse technique [J]. Electrochim. Acta, 2010, 55: 4837
18 Vignal V, Ringeval S, Thiébaut S, et al. Influence of the microstructure on the corrosion behaviour of low-carbon martensitic stainless steel after tempering treatment [J]. Corros. Sci., 2014, 85: 42
19 Vignal V, Richoux V, Suzon E, et al. The use of potentiostatic pulse testing to study the corrosion behavior of welded stainless steels in sodium chloride solution [J]. Mater. Des., 2015, 88: 186
20 Sun Y T, Sun L, Dai N W, et al. Application of potentiostatic pulse technique and statistical analysis in evaluating pitting resistance of aged 317L stainless steel [J]. Mater. Corros., 2020, 71: 900
21 Chen B, Sun Y T, Cai D Z, et al. Use of the potentiostatic pulse technique to study and influence pitting behavior of 317L stainless steel [J]. J. Electrochem. Soc., 2020, 167: 041509
22 Li T S, Scully J R, Frankel G S. Localized corrosion: Passive film breakdown vs pit growth stability: Part II. A model for critical pitting temperature [J]. J. Electrochem. Soc., 2018, 165: C484
23 Frankel G S, Li T S, Scully J R. Perspective—Localized corrosion: passive film breakdown vs pit growth stability [J]. J. Electrochem. Soc., 2017, 164: C180
24 Li T S, Scully J R, Frankel G S. Localized corrosion: Passive film breakdown vs. pit growth stability: Part III. A unifying set of principal parameters and criteria for pit stabilization and salt film formation [J]. J. Electrochem. Soc., 2018, 165: C762
25 Li T S, Scully J R, Frankel G S. Localized corrosion: Passive film breakdown vs. pit growth stability: Part IV. The role of salt film in pit growth: A mathematical framework [J]. J. Electrochem. Soc., 2019, 166: C115
[1] ZHAO Pingping, SONG Yingwei, DONG Kaihui, HAN En-Hou. Synergistic Effect Mechanism of Different Ions on the Electrochemical Corrosion Behavior of TC4 Titanium Alloy[J]. 金属学报, 2023, 59(7): 939-946.
[2] WANG Bin, NIU Mengchao, WANG Wei, JIANG Tao, LUAN Junhua, YANG Ke. Microstructure and Strength-Toughness of a Cu-Contained Maraging Stainless Steel[J]. 金属学报, 2023, 59(5): 636-646.
[3] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
[4] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
[5] HAN En-Hou, WANG Jianqiu. Effect of Surface State on Corrosion and Stress Corrosion for Nuclear Materials[J]. 金属学报, 2023, 59(4): 513-522.
[6] CHANG Litao. Corrosion and Stress Corrosion Crack Initiation in the Machined Surfaces of Austenitic Stainless Steels in Pressurized Water Reactor Primary Water: Research Progress and Perspective[J]. 金属学报, 2023, 59(2): 191-204.
[7] XIA Dahai, JI Yuanyuan, MAO Yingchang, DENG Chengman, ZHU Yu, HU Wenbin. Localized Corrosion Mechanism of 2024 Aluminum Alloy in a Simulated Dynamic Seawater/Air Interface[J]. 金属学报, 2023, 59(2): 297-308.
[8] SUN Yangting, LI Yiwei, WU Wenbo, JIANG Yiming, LI Jin. Effect of Inclusions on Pitting Corrosion of C70S6 Non-Quenched and Tempered Steel Doped with Ca and Mg[J]. 金属学报, 2022, 58(7): 895-904.
[9] WEN Donghui, JIANG Beibei, WANG Qing, LI Xiangwei, ZHANG Peng, ZHANG Shuyan. Microstructure Evolution at Elevated Temperature and Mechanical Properties of MoNb-Modified FeCrAl Stainless Steel[J]. 金属学报, 2022, 58(7): 883-894.
[10] TANG Yanbing, SHEN Xinwang, LIU Zhihong, QIAO Yanxin, YANG Lanlan, LU Daohua, ZOU Jiasheng, XU Jing. Corrosion Behaviors of Selective Laser Melted Inconel 718 Alloy in NaOH Solution[J]. 金属学报, 2022, 58(3): 324-333.
[11] ZHENG Chun, LIU Jiabin, JIANG Laizhu, YANG Cheng, JIANG Meixue. Effect of Tensile Deformation on Microstructure and Corrosion Resistance of High Nitrogen Austenitic Stainless Steels[J]. 金属学报, 2022, 58(2): 193-205.
[12] YUAN Jiahua, ZHANG Qiuhong, WANG Jinliang, WANG Lingyu, WANG Chenchong, XU Wei. Synergistic Effect of Magnetic Field and Grain Size on Martensite Nucleation and Variant Selection[J]. 金属学报, 2022, 58(12): 1570-1580.
[13] LUO Wenze, HU Long, DENG Dean. Numerical Simulation and Development of Efficient Calculation Method for Residual Stress of SUS316 Saddle Tube-Pipe Joint[J]. 金属学报, 2022, 58(10): 1334-1348.
[14] CAO Chao, JIANG Chengyang, LU Jintao, CHEN Minghui, GENG Shujiang, WANG Fuhui. Corrosion Behavior of Austenitic Stainless Steel with Different Cr Contents in 700oC Coal Ash/High Sulfur Flue-Gas Environment[J]. 金属学报, 2022, 58(1): 67-74.
[15] PAN Qingsong, CUI Fang, TAO Nairong, LU Lei. Strain-Controlled Fatigue Behavior of Nanotwin- Strengthened 304 Austenitic Stainless Steel[J]. 金属学报, 2022, 58(1): 45-53.
No Suggested Reading articles found!