Please wait a minute...
Acta Metall Sin  2020, Vol. 56 Issue (12): 1629-1642    DOI: 10.11900/0412.1961.2020.00194
Current Issue | Archive | Adv Search |
Fluid Flow and Heat Transfer in a Tundish with Channel Induction Heating for Sequence Casting with a Constant Superheat Control
TANG Haiyan(), LI Xiaosong, ZHANG Shuo, ZHANG Jiaquan
School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
Cite this article: 

TANG Haiyan, LI Xiaosong, ZHANG Shuo, ZHANG Jiaquan. Fluid Flow and Heat Transfer in a Tundish with Channel Induction Heating for Sequence Casting with a Constant Superheat Control. Acta Metall Sin, 2020, 56(12): 1629-1642.

Download:  HTML  PDF(3704KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Casting with superheat control is important in improving the quality and stability of steel products and reducing metallurgical defects. In recent years, the channel-type induction heating tundish is among the new technologies that have been used by the steel industry. It exhibits an effective liquid steel temperature control during continuous casting. However, in such technology, the fluid flow and heat transfer are significantly different from those in a conventional tundish. This is because of the implementation of the heating practice and action of the electromagnetic force. In this work, a mathematical model of electromagnetic-thermal-flow coupling is developed to investigate the feature of the electromagnetic force, fluid flow, and heat transfer in a six-strand H-type induction heating tundish. The flow field and temperature field characteristics in the tundish under different application modes of induction heating are compared. Moreover, the applicability of the traditional method of cold water modeling to the structure optimization of tundish with induction heating is discussed. The results indicate the eccentric distribution of the electromagnetic force in the tundish channel, pointing to the eccentric position of the channel. Additionally, the results suggest that the molten steel in the channel flows out with rotation. For case A0, an increase of 22 K in the molten steel temperature is observed after heating for 1500 s at 1000 kW power, compared with that without heating. However, due to the pinch effect of the electromagnetic force, the short-circuit flow at the outlets near the channel intensifies, and the flow consistency in tundish worsens. Compared optimized case A4 with the prototype case A0, the short-circuit flow of the outlets near the channel disappears, the temperature difference among the different flows is reduced, the flow consistency in the whole tundish is improved, and the heating rate is increased. The present study also demonstrates that the tundish structure optimization method under a cold state is still an important evidence for the induction heating state.

Key words:  induction heating      tundish      electromagnetic force      temperature field      flow field      structural optimization     
Received:  03 June 2020     
ZTFLH:  TF777  
Fund: National Natural Science Foundation of China(51874033);National Natural Science Foundation of China(U1860111);Natural Science Foundation of Beijing(2182038)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2020.00194     OR     https://www.ams.org.cn/EN/Y2020/V56/I12/1629

Fig.1  Schematics of the induction heating (IH) tundish structure
ParameterValueUnit
Tundish capacity54t
Liquid surface depth850mm
Inner diameter of long nozzle85mm
Submerged depth of long nozzle260mm
Inner diameter of submerged entry nozzle32mm
Induction channel diameter140mm
Induction channel length1570mm
Induction channel inclination angle downward3(°)
Height from channel center to tundish bottom284mm
Table 1  Geometrial and operating parameters of the IH tundish
Fig.2  Top views of the tundish grid models for cases A0 (a) and A4 (b)
ItemValueUnit
Induction coil frequency50Hz
Iron core relative permeability1000
Coil electric conductivity3.18×107S·m-1
Coil relative permeability1
Air relative permeability1
Conductivity of molten steel7.14×105S·m-1
Relative permeability of molten steel1
Inlet temperature1800K
Density of molten steel8523-0.8358Tkg·m-3
Viscosity of molten steel0.0061Pa·s
Thermal conductivity of molten steel41W·m-1·K-1
Specific heat capacity of molten steel750J·kg-1·K-1
Free surface heat flux15000W·m-2
Bottom heat flux1800W·m-2
Longitudinal wall heat flux4600W·m-2
Transversal wall heat flux4000W·m-2
Channel wall heat flux1200W·m-2
Table 2  Material parameters and boundary conditions for numerical simulation[14,17,23]
Fig.3  Multi-physics coupling calculation process for the IH tundish (k—turbulence kinetic energy, ε—turbulent dissipation,MHD—magnetohydrodynamics)
Fig.4  Comparisons of residence time distribution (RTD) curves between numerical (a) and water modelling[20] (b) for case A4 (θ—dimensionless time, E(θ) —dimensionless concentration)
Fig.5  Comparisons of magnetic induction intensity at Y direction between numerical simulation and reference measurement[30](Bx—magnetic induction intensity in x direction )
Fig.6  Magnetic field numerical simulation result at Z=-4 cm section
Fig.7  Electromagnetic force (Fmag) distribution in the induction heating channels
Fig.8  Electromagnetic force distribution in channel sections of tundish
Fig.9  Comparisons of the flow streamline in tundish
Fig.10  Comparisons of velocity vector in channel longitudinal sections
Fig.11  Velocity vector diagram in X2-L section
Fig.12  Temperature fields in X2 section at different moments with 1000 kW heating power
Fig.13  Temperature fields of the outlet longitudinal section
Fig.14  Velocity vector diagrams along channel longitudinal section at different moments for cases A0 (a1~d1) and A4 (a2~d2) with 1000 kW heating power (Ellipses in Fig.14d1 represent circulating flows)
Fig.15  Velocity vector diagrams on longitudinal section of outlet centre at different moments for cases A0 (a1~d1) and A4 (a2~d2) with 1000 kW heating power
Fig.16  Temperature distributions on channel longitudinal section at different moments for cases A0 (a1~d1) and A4 (a2~d2)with 1000 kW heating power
Fig.17  Temperature distributions through outlet center section at different moments for cases A0 (a1~d1) and A4 (a2~d2) with 1000 kW heating power
[1] Sahai Y. Tundish technology for casting clean steel: A review [J]. Metall. Mater. Trans., 2016, 47B: 2095
[2] Mao B, Tao J M, Jiang T X. Tundish channel type induction heating technology for continuous casting [J]. Contin. Cast., 2008, (5): 4
(毛 斌, 陶金明, 蒋桃仙. 连铸中间包通道式感应加热技术 [J]. 连铸, 2008, (5): 4)
[3] Cong L, Zhang J M, Lei S W, et al. Numerical simulation on tundish induction heating [J]. Res. Iron Steel, 2014, 42(3): 20
(丛 林, 张炯明, 雷少武等. 中间包感应加热的数值模拟 [J]. 钢铁研究, 2014, 42(3): 20)
[4] He F, Zhang L Y, Xu Q Y. Optimization of flow control devices for a T-type five-strand billet caster tundish: Water modeling and numerical simulation [J]. China Foundry, 2016, 13: 166
doi: 10.1007/s41230-016-5132-9
[5] Wang X Y, Zhao D T, Qiu S T, et al. Effect of tunnel filters on flow characteristics in an eight-strand tundish [J]. ISIJ Int., 2017, 57: 1990
doi: 10.2355/isijinternational.ISIJINT-2017-165
[6] Ramirez O S D, Torres-Alonso E, Banderas J A R, et al. Thermal and fluid-dynamic optimization of a five strand asymmetric delta shaped billet caster tundish [J]. Steel Res. Int., 2018, 89: 1700428
doi: 10.1002/srin.v89.3
[7] Morales R D, López-Ramirez S, Palafox-Ramos J, et al. Numerical and modeling analysis of fluid flow and heat transfer of liquid steel in a tundish with different flow control devices [J]. ISIJ Int., 1999, 39: 455
doi: 10.2355/isijinternational.39.455
[8] Cwudziński A. Numerical and physical modeling of liquid steel active flow in tundish with subflux turbulence controller and dam [J]. Steel Res. Int., 2014, 85: 902
doi: 10.1002/srin.v85.5
[9] Harnsihacacha A, Piyapaneekoon A, Kowitwarangkul P. Physical water model and CFD studies of fluid flow in a single strand tundish [J]. Mater. Today: Proceedings, 2018, 5: 9220
[10] Fang Q, Zhang H, Luo R H, et al. Optimization of flow, heat transfer and inclusion removal behaviors in an odd multistrand bloom casting tundish [J]. J. Mater. Res. Technol., 2020, 9: 347
doi: 10.1016/j.jmrt.2019.10.064
[11] Ueda T, Ohara A, Sakurai M, et al. A tundish provided with a heating device for molten steel [P]. EU Pat, 0119853, 1984
[12] Mabuchi M, Yoshii Y, Nozaki T, et al. Investigation of the purification of molten steel by using tundish heater: Development on the controlling method of casting temperature in continuous casting V [J]. ISIJ Int., 1984, 70: 118
[13] Miura R, Nisihara R, Tanaka H, et al. Tundish induction heater of No.2 continuous caster at Yawata works [J]. ISIJ Int., 1995, 81: T30
[14] Yang B, Lei H, Bi Q, et al. Electromagnetic conditions in a tundish with channel type induction heating [J]. Steel Res. Int., 2018, 89: 1800145
doi: 10.1002/srin.v89.10
[15] Yue Q, Pei X, Zhang C, et al. Magnetohydrodynamic calculation on double-loop channel induction tundish [J]. Arch. Metall. Mater., 2018, 63: 329
[16] Xing F, Zheng S G, Zhu M Y. Motion and removal of inclusions in new induction heating tundish [J]. Steel Res. Int., 2018, 89: 1700542
doi: 10.1002/srin.v89.6
[17] Wang Q, Li B K, Tsukihashi F. Modeling of a thermo-electromagneto-hydrodynamic problem in continuous casting tundish with channel type induction heating [J]. ISIJ Int., 2014, 54(2): 311
doi: 10.2355/isijinternational.54.311
[18] Tang H Y, Guo L Z, Wu G H, et al. Hydrodynamic modeling and mathematical simulation on flow field and inclusion removal in a seven-strand continuous casting tundish with channel type induction heating [J]. Metals, 2018, 8: 374
doi: 10.3390/met8060374
[19] Wu G H, Tang H Y, Xiao H, et al. Physical simulation on a 7-strand continuous casting tundish with channel type induction heating [J]. Iron Steel, 2017, 52(11): 20
(吴光辉, 唐海燕, 肖 红等. 通道式感应加热7流中间包流场的物理模拟 [J]. 钢铁, 2017, 52(11): 20)
[20] Zhang S, Tang H Y, Liu J W, et al. Structural optimization of a six-strand H-type channel induction heating tundish [J]. J. Iron Steel Res., 2019, 31: 787
(张 硕, 唐海燕, 刘锦文等. 六流H型通道感应加热中间包的结构优化 [J]. 钢铁研究学报, 2019, 31: 787)
[21] Tang H Y, Yu M, Li J S, et al. Numerical and physical simulation on inner structure optimization of a continuous casting tundish and its metallurgical effect [J]. J. Univ. Sci. Technol. Beijing, 2009, 31(S1): 38
(唐海燕, 于 满, 李京社等. 连铸中间包内部结构优化的数理模拟及冶金效果 [J]. 北京科技大学学报, 2009, 31(S1): 38)
[22] Yang B, Deng A Y, Wang E G. Simulating the magnetic field/transfer phenomenon of the tundish with channel type inducting heating [J]. IOP Conf. Ser.: Mater. Sci. Eng., 2018, 424: 012060
doi: 10.1088/1757-899X/424/1/012060
[23] Yue Q, Zhang C B, Pei X H. Magnetohydrodynamic flows and heat transfer in a twin-channel induction heating tundish [J]. Ironmak. Steelmak., 2017, 44: 227
doi: 10.1080/03019233.2016.1209919
[24] Liu H P. State of the art of numerical simulation of magneto-hydro dynamics in the continuous casting process [J]. Contin. Cast., 2015, (1): 7
doi: 10.13228/j.boyuan.issn1005-4006.20150012
(刘和平. 连铸过程中电磁流体力学的数值模拟现状及发展趋势 [J]. 连铸, 2015, (1): 7)
doi: 10.13228/j.boyuan.issn1005-4006.20150012
[25] Jiang G Z, Kong J Y, Li G F, et al. Numerical simulation and optimization of flow field in tundish [J]. China Metall., 2008, 18(2): 46
(蒋国璋, 孔建益, 李公法等. 中间包流场的数值模拟及其优化 [J]. 中国冶金, 2008, 18(2): 46)
[26] Xing F, Zheng S G, Liu Z H, et al. Flow field, temperature field, and inclusion removal in a new induction heating tundish with bent channels [J]. Metals, 2019, 9: 561
doi: 10.3390/met9050561
[27] Shi Z M, E J Q, Liu C Y, et al. Numerical simulation of flow phenomena and optimum operation of tundish [J]. J. Cent. South Univ. Technol., 2003, 10: 155
doi: 10.1007/s11771-003-0059-x
[28] Wen Y M, Han Y S, Liu Q, et al. Optimization of multi-fields coupled molten steel behavior in bloom continuous casting [J]. Iron Steel, 2018, 53(6): 53
(文艳梅, 韩延申, 刘 青等. 大方坯结晶器内的多物理场模拟优化 [J]. 钢铁, 2018, 53(6): 53)
[29] Han L H, Yu C M, Qu M L. Numerical simulation of flow and temperature fields in electroslag remelting process [J]. Res. Exp. Lab., 2018, 37(1): 47
(韩丽辉, 于春梅, 曲明磊. 电渣重熔过程流场和温度场的数值模拟 [J]. 实验室研究与探索, 2018, 37(1): 47)
[30] Vives C, Ricou R. Magnetohydrodynamic flows in a channel-induction furnace [J]. Metall. Trans., 1991, 22B: 193
[1] GAO Han, LIU Li, ZHOU Xiaoyu, ZHOU Xinyi, CAI Wenjun, ZHOU Hongling. Preparation and Bioactivity of Micro-Nano Structure on Ti6Al4V Surface[J]. 金属学报, 2023, 59(11): 1466-1474.
[2] TANG Haiyan, LIU Jinwen, WANG Kaimin, XIAO Hong, LI Aiwu, ZHANG Jiaquan. Progress and Perspective of Functioned Continuous Casting Tundish Through Heating and Temperature Control[J]. 金属学报, 2021, 57(10): 1229-1245.
[3] WANG Fuqiang, LIU Wei, WANG Zhaowen. Effect of Local Cathode Current Increasing on Bath-Metal Two-Phase Flow Field in Aluminum Reduction Cells[J]. 金属学报, 2020, 56(7): 1047-1056.
[4] XIAO Hong,XU Pengpeng,QI Zichen,WU Zonghe,ZHAO Yunpeng. Preparation of Steel/Aluminum Laminated Composites by Differential Temperature Rolling with Induction Heating[J]. 金属学报, 2020, 56(2): 231-239.
[5] Ming HE, Xianliang LI, Qingwei WANG, Lianyu WANG, Qiang WANG. Influence of Magnetic Shielding on the Power Loss of Induction Heating Power Supply in the Electro-magnetic Induction Controlled Automated Steel Teeming System[J]. 金属学报, 2019, 55(2): 249-257.
[6] Xinhua LIU, Huadong FU, Xingqun HE, Xintong FU, Yanqing JIANG, Jianxin XIE. Numerical Simulation Analysis of Continuous Casting Cladding Forming for Cu-Al Composites[J]. 金属学报, 2018, 54(3): 470-484.
[7] Xiaoyu CHONG, Guangchi WANG, Jun DU, Yehua JIANG, Jing FENG. Numerical Simulation of Temperature Field and Thermal Stress in ZTAp/HCCI Composites DuringSolidification Process[J]. 金属学报, 2018, 54(2): 314-324.
[8] Chenglin LIU, Haijun SU, Jun ZHANG, Taiwen HUANG, Lin LIU, Hengzhi FU. Effect of Electromagnetic Field on Microstructure ofNi-Based Single Crystal Superalloys[J]. 金属学报, 2018, 54(10): 1428-1434.
[9] Linyuan HAN, Xuan LI, Chenglin CHU, Jing BAI, Feng XUE. Corrosion Behavior of AZ31 Magnesium Alloy in Dynamic Conditions[J]. 金属学报, 2017, 53(10): 1347-1356.
[10] Bin XU,Qingxian HU,Shujun CHEN,Fan JIANG,Xiaoli WANG. NUMERICAL SIMULATION OF DYNAMIC BEHAVIOR OF KEYHOLE AND MOLTEN POOL AT K-PAW QUASI STEADY PROCESS[J]. 金属学报, 2016, 52(7): 804-810.
[11] Yadong CHEN, Yunrong ZHENG, Qiang FENG. EVALUATING SERVICE TEMPERATURE FIELD OF HIGH PRESSURE TURBINE BLADES MADE OF DIRECTIONALLY SOLIDIFIED DZ125 SUPERALLOY BASED ON MICRO-STRUCTURAL EVOLUTION[J]. 金属学报, 2016, 52(12): 1545-1556.
[12] Jun HUANG,Yongjie ZHANG,Baofeng WANG,Yakun ZHANG,Xin YE,Shikai ZHOU. ESTABLISHMENT OF A FULL SCALE TUNDISH PHYSICAL SIMULATION PLATFORM AND APPLICATION RESEARCH[J]. 金属学报, 2016, 52(11): 1484-1490.
[13] JIANG Yanbin, LIU Xinhua, WANG Chunyang, MO Yongda, XIE Jianxin. INFLUENCE OF INDUCTION HEATING CONTINUOUS ANNEALING ON RECRYSTALLIZATION AND INTER- FACIAL INTERMETALLIC COMPOUND OF COPPER-CLAD ALUMINUM WIRE[J]. 金属学报, 2014, 50(4): 479-488.
[14] ZHAO Bo, WU Chuansong,JIA Chuanbao, YUAN Xin. NUMERICAL ANALYSIS OF THE WELD BEAD PROFILES IN UNDERWATER WET FLUX-CORED ARC WELDING[J]. 金属学报, 2013, 49(7): 797-803.
[15] XU Qingdong, LIN Xin, SONG Menghua, YANG Haiou, HUANG Weidong. MICROSTRUCTURE OF HEAT-AFFECTED ZONE OF LASER FORMING REPAIRED 2Cr13 STAINLESS STEEL[J]. 金属学报, 2013, 49(5): 605-613.
No Suggested Reading articles found!