Please wait a minute...
Acta Metall Sin  2018, Vol. 54 Issue (10): 1428-1434    DOI: 10.11900/0412.1961.2017.00539
Current Issue | Archive | Adv Search |
Effect of Electromagnetic Field on Microstructure ofNi-Based Single Crystal Superalloys
Chenglin LIU, Haijun SU(), Jun ZHANG, Taiwen HUANG, Lin LIU, Hengzhi FU
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
Cite this article: 

Chenglin LIU, Haijun SU, Jun ZHANG, Taiwen HUANG, Lin LIU, Hengzhi FU. Effect of Electromagnetic Field on Microstructure ofNi-Based Single Crystal Superalloys. Acta Metall Sin, 2018, 54(10): 1428-1434.

Download:  HTML  PDF(6616KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

With the increase of the alloying degree and structural complexity as well as larger size in Ni-based superalloy blades, it is essentially important to suppress the solidification defects. When the electromagnetic field is introduced into solidification process, the solidification properties of alloy can be modified without changing the alloy composition, which can well eliminate the casting defects, such as the composition segregation, and optimize the solidification microstructure and improve properties. The effect of induction coil magnetic field on solidification structure of DD90 single crystal superalloy is studied by changing the thickness of graphite sleeve. The distribution of magnetic field and flow field in alloy melt are analyzed by Ansys finite element analysis (FEM). The results show that when the thickness of the graphite sleeve is 10~30 mm, the monocrystalline remains intact and the primary dendrite arm spacing increases with increasing the thickness, while the second dendrites are the opposite rule. Moreover, the as-cast microstructures of γ′ phase size, eutectic structure and content increase significantly, and the element segregation increases simultaneously with increasing the graphite sleeve thickness. The Ansys FEM shows that the magnetic field and flow velocity in the melt decrease with the increase of the thickness of graphite sleeve. Based on the thermoelectric magnetic convection induced by the magnetic field during solidification and the effect of the convection on the microstructure, the above phenomenon is analyzed and discussed.

Key words:  single crystal superalloy      magnetic field      flow field      thermoelectric magnetic convection     
Received:  15 December 2017     
ZTFLH:  TG146.1  
Fund: Supported by National Natural Science Foundation of China (Nos.51690163 and 51331005)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2017.00539     OR     https://www.ams.org.cn/EN/Y2018/V54/I10/1428

Fig.1  FEM model used in the simulation
Material Resistivity Permeability Conductivity
Ωm Hm-1 Ω-1m-1
DD90 alloy 1.25×10-6 600 1450000
Graphite sleeve - 0.98 3000
Coil 1.75×10-8 1 -
Vacuum - 1 -
Table 1  Material parameters for simulation
Fig.2  Transverse (a, c, e, g, i) and longitudinal (b, d, f, h, j) microstructures of DD90 superalloy with graphite sleeve thicknesses D=10 mm (a, b), 15 mm (c, d), 20 mm (e, f), 25 mm (g, h) and 30 mm (i, j)
Fig.3  The relationships between the primary (a) and secondary (b) dendrite arm spacing with the thickness of graphite
Fig.4  SEM images of γ′ phase in the dendrite core of DD90 superalloy with D=10 mm (a), 15 mm (b), 20 mm (c), 25 mm (d) and 30 mm (e)
Fig.5  SEM images of eutectic structure in DD90 superalloy with D=10 mm (a), 15 mm (b), 20 mm (c), 25 mm (d) and 30 mm (e)
Fig.6  Microsegregation coefficients of DD90 superalloy with different graphite sleeve thicknesses
Fig.7  The magnetic field (B) distributions in the melt of DD90 superalloy with D=10 mm (a), 15 mm (b), 20 mm (c), 25 mm (d) and 30 mm (e)
Fig.8  Flow field (v) distributions in the melt of DD90 superalloy with D=10 mm (a), 15 mm (b), 20 mm (c), 25 mm (d) and 30 mm (e)
Fig.9  Seebeck effect (a) and the thermal electromagnetic convection (b) in the interdendritic region (ΔT—temperature gradient; ΔV—potential gradient; FT—thermal electromagnetic force; JT—thermal electromagnetic flow; B—magnetic field )
[1] Wang X G, Li J R, Yu J.Tensile anisotropy of single crystal superalloy DD9[J]. Acta Metall. Sin., 2015, 51: 1253(王效光, 李嘉荣, 喻健. DD9单晶高温合金拉伸性能各向异性[J]. 金属学报, 2015, 51: 1253)
[2] Jin T, Zhou Y Z, Wang X G, et al.Research process on microstructural stability and mechanical behavior of advanced Ni-based single crystal superalloys[J]. Acta Metall. Sin., 2015, 51: 1153(金涛, 周亦胄, 王新广等. 先进镍基单晶高温合金组织稳定性及力学行为的研究进展[J]. 金属学报, 2015, 51: 1153)
[3] Sun X F, Jin T, Zhou Y Z, et al.Research progress of Nickel-base single crystal superalloys[J]. Mater. China, 2012, 31(12): 1(孙晓峰, 金涛, 周亦胄等. 镍基单晶高温合金研究进展[J]. 中国材料进展, 2012, 31(12): 1)
[4] Zhang J, Huang T W, Liu L, et al.Advances in solidification characteristics and typical casting defects in Nickel-based single-crystal superalloys[J]. Acta Metall. Sin., 2015, 51: 1163(张军, 黄太文, 刘林等. 单晶高温合金凝固特性与典型凝固缺陷研究[J]. 金属学报, 2015, 51: 1163)
[5] Wang Y M, Li S M, Zhong H, et al.Evaluation of the uniform distribution of dendritic microstructure in directionally solidified single-crystal DD6 superalloy[J]. Acta Metall. Sin., 2015, 51: 1038(王玉敏, 李双明, 钟宏等. 定向凝固DD6单晶高温合金枝晶组织均匀性研究[J]. 金属学报, 2015, 51: 1038)
[6] Lehmann P, Moreau R, Camel D, et al.A simple analysis of the effect of convection on the structure of the mushy zone in the case of horizontal bridgman solidification. Comparison with experimental results[J]. J. Cryst. Growth, 1998, 183: 690
[7] Zhang Y D, Esling C, Gong M L, et al.Microstructural features induced by a high magnetic field in a hypereutectoid steel during austenitic decomposition[J]. Scr. Mater., 2006, 54: 1897
[8] Matthiesen D H, Wargo M J, Motakef S, et al.Dopant segregation during vertical Bridgman-Stockbarger growth with melt stabilization by strong axial magnetic fields[J]. J. Cryst. Growth, 1987, 85: 557
[9] Tewari S N, Shah R, Song H.Effect of magnetic field on the microstructure and macrosegregation in directionally solidified Pb-Sn alloys[J]. Metall. Mater. Trans., 1994, 25A: 1535
[10] Robertson Jr.G D, O'Connor D J. Magnetic field effects on float-zone Si crystal growth: II. Strong transverse fields[J]. J. Cryst. Growth, 1986, 76: 100
[11] Li Y J, Teng Y F, Feng X H, et al.Effects of pulsed magnetic field on microsegregation of solute elements in a Ni-based single crystal superalloy[J]. J. Mater. Sci. Technol., 2017, 33: 105
[12] Xuan W D, Ren Z M, Li C J.Effect of a high magnetic field on microstructures of Ni-based superalloy during directional solidification[J]. J. Alloys Compd., 2015, 620: 10
[13] Zi B T, Ba Q X, Cui J Z, et al.Study on axial changes of as-cast structures of Al-alloy sample treated by the novel SPMF technique[J]. Scr. Mater., 2000, 43: 377
[14] Trindade L B, Vilela A C F, Filho A F F, et al. Numerical model of electromagnetic stirring for continuous casting billets[J]. IEEE Trans. Magn., 2011, 38: 3658
[15] Wang H F, Su H J, Zhang J, et al.Influence of melt superheating treatment temperature on solute distribution behavior of a new Ni-based single crystal superalloys[J]. Acta Metall. Sin., 2016, 52: 419(王海锋, 苏海军, 张军等. 熔体超温处理温度对新型镍基单晶高温合金溶质分配行为的影响[J]. 金属学报, 2016, 52: 419)
[16] Zhao Y S, Zhang J, Luo Y S, et al.Effects of Hf on high temperature low stress rupture properties of a second generation Ni-based single crystal superalloy DD11[J]. Acta Metall. Sin., 2015, 51: 1261(赵云松, 张剑, 骆宇时等. Hf对第二代镍基单晶高温合金DD11高温低应力持久性能的影响[J]. 金属学报, 2015, 51: 1261)
[17] Li X, Gagnoud A, Wang J, et al.Effect of a high magnetic field on the microstructures in directionally solidified Zn-Cu peritectic alloys[J]. Acta Mater., 2014, 73: 83
[18] Xuan W D, Liu H, Li C J, et al.Effect of a high magnetic field on microstructures of Ni-based single crystal superalloy during seed melt-back[J]. Metall. Mater. Trans., 2016, 47B: 828
[19] Li X, Fautrelle Y, Ren Z M.Influence of thermoelectric effects on the solid-liquid interface shape and cellular morphology in the mushy zone during the directional solidification of Al-Cu alloys under a magnetic field[J]. Acta Mater., 2007, 55: 3803
[20] Li X, Ren Z M, Wang J, et al.Influence of a weak static magnetic field on the primary dendrite arm spacing of a directionally solidified Ni-based superalloy[J]. Mater. Lett., 2012, 67: 205
[21] Lehmann P, Moreau R, Camel D, et al.A simple analysis of the effect of convection on the structure of the mushy zone in the case of horizontal Bridgman solidification. Comparison with experimental results[J]. J. Cryst. Growth, 1998, 183: 690
[22] Zhang Y J, Huang B, Li J G.Microstructural evolution with a wide range of solidification cooling rates in a Ni-based superalloy[J]. Metall. Mater. Trans., 2013, 44A: 1641
[23] Campanella T, Charbon C, Rappaz M.Influence of permeability on the grain refinement induced by forced convection in copper-base alloys[J]. Scr. Mater., 2003, 49: 1029
[24] Turchin A N, Eskin D G, Katgerman L. Effect of melt flow on macro-and microstructure evolution during solidification of an Al-4.5%Cu alloy [J]. Mater. Sci. Eng., 2005, A413-414: 98
[25] Xuan W D, Lan J, Liu H, et al.Effects of a high magnetic field on the microstructure of Ni-based single-crystal superalloys during directional solidification[J]. Metall. Mater. Trans., 2017, 48A: 3804
[1] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[2] LI Jiarong, DONG Jianmin, HAN Mei, LIU Shizhong. Effects of Sand Blasting on Surface Integrity and High Cycle Fatigue Properties of DD6 Single Crystal Superalloy[J]. 金属学报, 2023, 59(9): 1201-1208.
[3] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[4] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[5] WANG Di, HE Lili, WANG Dong, WANG Li, ZHANG Siqian, DONG Jiasheng, CHEN Lijia, ZHANG Jian. Influence of Pt-Al Coating on Tensile Properties of DD413 Alloy at High Temperatures[J]. 金属学报, 2023, 59(3): 424-434.
[6] ZHANG Zixuan, YU Jinjiang, LIU Jinlai. Anisotropy of Stress Rupture Property of Ni Base Single Crystal Superalloy DD432[J]. 金属学报, 2023, 59(12): 1559-1567.
[7] SU Zhenqi, ZHANG Congjiang, YUAN Xiaotan, HU Xingjin, LU Keke, REN Weili, DING Biao, ZHENG Tianxiang, SHEN Zhe, ZHONG Yunbo, WANG Hui, WANG Qiuliang. Formation and Evolution of Stray Grains on Remelted Interface in the Seed Crystal During the Directional Solidification of Single-Crystal Superalloys Assisted by Vertical Static Magnetic Field[J]. 金属学报, 2023, 59(12): 1568-1580.
[8] YUAN Jiahua, ZHANG Qiuhong, WANG Jinliang, WANG Lingyu, WANG Chenchong, XU Wei. Synergistic Effect of Magnetic Field and Grain Size on Martensite Nucleation and Variant Selection[J]. 金属学报, 2022, 58(12): 1570-1580.
[9] ZHANG Shaohua, XIE Guang, DONG Jiasheng, LOU Langhong. Investigation on Eutectic Dissolution Behavior of Single Crystal Superalloy by Differential Scanning Calorimetry[J]. 金属学报, 2021, 57(12): 1559-1566.
[10] MA Dexin, ZHAO Yunxing, XU Weitai, PI Libo, LI Zhongxing. Surface Effect on Eutectic Structure Distribution in Single Crystal Superalloy Castings[J]. 金属学报, 2021, 57(12): 1539-1548.
[11] LUAN Xiaosheng, LIANG Zhiqiang, ZHAO Wenxiang, SHI Guihong, LI Hongwei, LIU Xinli, ZHU Guorong, WANG Xibin. Strengthening Mechanism of 45CrNiMoVA Steel by Pulse Magnetic Treatment[J]. 金属学报, 2021, 57(10): 1272-1280.
[12] TANG Haiyan, LIU Jinwen, WANG Kaimin, XIAO Hong, LI Aiwu, ZHANG Jiaquan. Progress and Perspective of Functioned Continuous Casting Tundish Through Heating and Temperature Control[J]. 金属学报, 2021, 57(10): 1229-1245.
[13] HE Siliang, ZHAO Yunsong, LU Fan, ZHANG Jian, LI Longfei, FENG Qiang. Effects of Hot Isostatic Pressure on Microdefects and Stress Rupture Life of Second-Generation Nickel-Based Single Crystal Superalloy in As-Cast and As-Solid-Solution States[J]. 金属学报, 2020, 56(9): 1195-1205.
[14] WANG Fuqiang, LIU Wei, WANG Zhaowen. Effect of Local Cathode Current Increasing on Bath-Metal Two-Phase Flow Field in Aluminum Reduction Cells[J]. 金属学报, 2020, 56(7): 1047-1056.
[15] LIU Jinlai, YE Lihua, ZHOU Yizhou, LI Jinguo, SUN Xiaofeng. Anisotropy of Elasticity of a Ni Base Single Crystal Superalloy[J]. 金属学报, 2020, 56(6): 855-862.
No Suggested Reading articles found!