Please wait a minute...
Acta Metall Sin  2019, Vol. 55 Issue (12): 1561-1568    DOI: 10.11900/0412.1961.2019.00207
Research paper Current Issue | Archive | Adv Search |
Effect of Nano-Crystallization on Dynamic Compressive Property of Zr-Based Amorphous Alloy
JIN Chenri1,YANG Suyuan1,2(),DENG Xueyuan1,WANG Yangwei1,2,CHENG Xingwang1,2
1. School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
2. National Key Laboratory of Science and Technology on Materials under Shock and Impact, Beijing Institute of Technology, Beijing 100081, China
Cite this article: 

JIN Chenri, YANG Suyuan, DENG Xueyuan, WANG Yangwei, CHENG Xingwang. Effect of Nano-Crystallization on Dynamic Compressive Property of Zr-Based Amorphous Alloy. Acta Metall Sin, 2019, 55(12): 1561-1568.

Download:  HTML  PDF(14714KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Zr-based amorphous alloys are characterized by high glass forming ability, high thermal stability and excellent mechanical properties. The amorphous alloys in thermodynamic metastable state have the tendency to change to metastable state with lower energy or even crystal structure in equilibrium state under certain temperature or pressure conditions. At present, few researches have been conducted on the mechanical behavior of partially crystallized Zr-Cu-Ni-Al-Nb amorphous alloys, especially the fracture behavior under dynamic loading. In this work, as-cast Zr-Cu-Ni-Al-Nb amorphous alloy was annealed to accomplish different levels of nano-crystallization by controlling holding time. DSC, XRD, HRTEM, SEM, quasi-static and dynamic compression tests were utilized to research the effect of nano-crystallization on compressive strength and fracture mechanism of Zr-based amorphous alloy under different strain rates. The results indicated that the volume fraction and size of nanoscale crystalline phase inside Zr-based amorphous alloy increased with the increasing of annealing holding time. The compressive strength of annealed Zr-based amorphous alloy increased first and then decreased with the increase of holding time. The variation of strain rates also affected the compressive strength, which decreased when the strain rate increased from 1×10-3 s-1 to 1×103 s-1, and increased when the strain rate continually increased to 3×103 s-1. Different degrees of nano-crystallization had an impact on the fracture characteristics of Zr-based amorphous alloy. As the degree of crystallization increased, the fracture morphology of compression samples changed from vein-like patterns to quasi-cleavage features and then to river patterns.

Key words:  amorphous alloy      nano-crystallization      dynamic compression      fracture morphology     
Received:  25 June 2019     
ZTFLH:  TG146.2  
Fund: National Ministries Program of China(No.2017-ZD-022)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2019.00207     OR     https://www.ams.org.cn/EN/Y2019/V55/I12/1561

Fig.1  Isothermal DSC curves at different temperatures (a) and the selection of holding time (b)
Fig.2  DSC curves of as-cast and annealed Zr-based amorphous alloy with different holding time
Holding time / minΔH / (J·g-1)χ / %
20-53.216
40-41.335
60-33.248
80-28.555
Table 1  Crystallization exothermic enthalpy (ΔH) and volume fraction of crystallized phase (χ) of annealed Zr-based amorphous alloy
Fig.3  XRD spectra of as-cast and annealed Zr-based amorphous alloy
Fig.4  HRTEM images and relevant SAED patterns (insets) of as-cast (a) and annealed Zr-based amorphous alloy with holding time of 20 min (b), 40 min (c), 60 min (d) and 80 min (e)
Fig.5  Compressive true stress-true strain curves of as-cast and annealed Zr-based amorphous alloy at strain rates of 1×10-3 s-1 (a), 1×103 s-1 (b) and 3×103 s-1 (c)
Fig.6  Relationship between compressive strength and crystallization volume fraction under different strain rates
Fig.7  Recycled samples of annealed Zr-based amorphous alloy with holding time of 20 min (a1~a3), 40 min (b1~b3), 60 min (c1~c3) and 80 min (d1~d3) after compression tests with strain rates of 1×10-3 s-1 (a1~d1), 1×103 s-1 (a2~d2) and 3×103 s-1 (a3~d3)
Fig.8  Compression fracture morphologies of annealed Zr-based amorphous alloy with holding time of 20 min (a1~a6), 40 min (b1~b4), 60 min (c1~c5) and 80 min (d1~d6) under different strain rates of 1×10-3 s-1 (a1, a2, b1, b2, c1, c2, d1, d2, d3), 1×103 s-1 (a3, a4, b3, c3, d4) and 3×103 s-1 (a5, a6, b4, c4, c5, d5, d6)
[1] Luborsky F E. Amorphous Metallic Alloys [M]. London: Butterworth, 1983: 1
[2] Johnson W L. Bulk glass-forming metallic alloys: Science and technology [J]. MRS Bull., 1999, 24(10): 42
[3] Wang W H, Dong C, Shek C H. Bulk metallic glasses [J]. Mater. Sci. Eng., 2004, R44: 45
[4] Ashby M F, Greer A L. Metallic glasses as structural materials [J]. Scr. Mater., 2006, 54: 321
[5] Huang Y J, Chiu Y L, Shen J, et al. Mechanical performance of metallic glasses during nanoscratch tests [J]. Intermetallics, 2010, 18: 1056
[6] Peker A, Johnson W L. A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10Be22.5 [J]. Appl. Phys. Lett., 1993, 63: 2342
[7] Inoue A, Zhang T, Masumoto T. Zr-Al-Ni amorphous alloys with high glass transition temperature and significant supercooled liquid region [J]. Mater. Trans., 1990, 31: 177
[8] Inoue A, Zhang T, Nishiyama N, et al. Preparation of 16 mm diameter rod of amorphous Zr65Al7.5Ni10Cu17.5 alloy [J]. Mater. Trans., 1993, 34: 1234
[9] Jiang Q K, Wang X D, Nie X P, et al. Zr-(Cu, Ag)-Al bulk metallic glasses [J]. Acta Mater., 2008, 56: 1785
[10] Zhang Y, Zhao D Q, Pan M X, et al. Glass forming properties of Zr-based bulk metallic alloys [J]. J. Non-Cryst. Solids, 2003, 315: 206
[11] Lin X H, Johnson W L, Rhim W K. Effect of oxygen impurity on crystallization of an undercooled bulk glass forming Zr-Ti-Cu-Ni-Al alloy [J]. Mater. Trans., 1997, 38: 473
[12] Cao H B, Ma D, Hsieh K C, et al. Computational thermodynamics to identify Zr-Ti-Ni-Cu-Al alloys with high glass-forming ability [J]. Acta Mater., 2006, 54: 2975
[13] Deng S T, Zhang H F, Wang A M, et al. Improving glass forming ability of Zr50.5Cu36.5Ni4Al9 alloy by suppressing CuZr phase precipitation [J]. J. Alloys Compd., 2008, 460: 182
[14] Wu W F, Yao K F. The progress in research of nano-crystallization of amorphous alloys [J]. Rare Met. Mater. Eng., 2005, 34: 505
[14] (吴文飞, 姚可夫. 非晶合金纳米晶化的研究进展 [J]. 稀有金属材料与工程, 2005, 34: 505)
[15] Inoue A, Zhang T, Kim Y H. Synthesis of high strength bulk amorphous Zr-Al-Ni-Cu-Ag alloys with a nanoscale secondary phase [J]. Mater. Trans., 1997, 38: 749
[16] Bian Z, He G, Chen G L. Mechanical properties of Zr52.5Cu17.9-Ni14.6Al10Ti5 bulk amorphous alloys after annealing isothermally [J]. Acta Metall. Sin., 2000, 36: 693
[16] (边 赞, 何 国, 陈国良. Zr52.5Cu17.9Ni14.6Al10Ti5块体非晶退火后的力学性能 [J]. 金属学报, 2000, 36: 693)
[17] Zheng W. Dynamic mechanical behaviors of ZrCuNiAl bulk glass-forming alloy system [D]. Harbin: Harbin Institute of Technology, 2011
[17] (郑 伟. ZrCuNiAl系块体非晶合金的动态力学行为 [D]. 哈尔滨: 哈尔滨工业大学, 2011)
[18] Peng P, Zheng C X, Hu Y J, et al. Measurement and control of the crystallinity of amorphous alloy during crystallization by DSC [J]. J. Hunan Univ. (Nat. Sci.), 2003, 30(3): 40
[18] (彭 平, 郑采星, 胡艳军, 等. 非晶合金晶化过程中结晶度的DSC法测定与控制(I) [J]. 湖南大学学报(自然科学版), 2003, 30(3: 40)
[19] Wang G, Shen J, Qin Q H, et al. Investigation of deformation behavior of Zr-Ti-Ni-Cu-Be bulk metallic glass containing nanocrystals [J]. J. Mater. Sci., 2005, 40: 4561
[20] Fan C, Inoue A. Ductility of bulk nanocrystalline composites and metallic glasses at room temperature [J]. Appl. Phys. Lett., 2000, 77: 46
[21] Fan C, Li C F, Inoue A, et al. Deformation behavior of Zr-based bulk nanocrystalline amorphous alloys [J]. Phys. Rev., 2000, 61B: R3761
[22] Fan C, Louzguine D V, Li C F, et al. Nanocrystalline composites with high strength obtained in Zr-Ti-Ni-Cu-Al bulk amorphous alloys [J]. Appl. Phys. Lett., 1999, 75: 340
[23] Liu C T, Heatherly L, Horton J A, et al. Test environments and mechanical properties of Zr-base bulk amorphous alloys [J]. Metall. Mater. Trans., 1998, 29A: 1811
[24] Jiang W H, Liao H H, Liu F X, et al. Rate-dependent temperature increases in shear bands of a bulk-metallic glass [J]. Metall. Mater. Trans., 2008, 39A: 1822
[25] Liu J, Wang L, Cheng H W, et al. Fracture behavior of Zr-based bulk amorphous alloy under high-speed impact [J]. Trans. Beijing Inst. Technol., 2012, 32: 198
[25] (刘 俊, 王 鲁, 程焕武等. 高速冲击载荷下块体Zr基非晶合金断裂行为研究 [J]. 北京理工大学学报, 2012, 32: 198)
[1] LIU Shuaishuai, HOU Chaonan, WANG Engang, JIA Peng. Plastic Rheological Behaviors of Zr61Cu25Al12Ti2 and Zr52.5Cu17.9Ni14.6Al10Ti5 Amorphous Alloys in the Supercooled Liquid Region[J]. 金属学报, 2022, 58(6): 807-815.
[2] LI Min, LI Haoze, WANG Jijie, MA Yingche, LIU Kui. Effect of Ce on the Microstructure, High-Temperature Tensile Properties, and Fracture Mode of Strip Casting Non-Oriented 6.5%Si Electrical Steel[J]. 金属学报, 2022, 58(5): 637-648.
[3] LI Jinfu, LI Wei. Structure and Glass-Forming Ability of Al-Based Amorphous Alloys[J]. 金属学报, 2022, 58(4): 457-472.
[4] ZHANG Jinyong, ZHAO Congcong, WU Yijin, CHEN Changjiu, CHEN Zheng, SHEN Baolong. Structural Characteristic and Crystallization Behavior of the (Fe0.33Co0.33Ni0.33)84 -x Cr8Mn8B x High-Entropy-Amorphous Alloy Ribbons[J]. 金属学报, 2022, 58(2): 215-224.
[5] HAN Luhui, KE Haibo, ZHANG Pei, SANG Ge, HUANG Huogen. Kinetic Crystallization Behavior of Amorphous U60Fe27.5Al12.5 Alloy[J]. 金属学报, 2022, 58(10): 1316-1324.
[6] LIU Riping, MA Mingzhen, ZHANG Xinyu. New Development of Research on Casting of Bulk Amorphous Alloys[J]. 金属学报, 2021, 57(4): 515-528.
[7] HU Xiang, GE Jiacheng, LIU Sinan, FU Shu, WU Zhenduo, FENG Tao, LIU Dong, WANG Xunli, LAN Si. Combustion Mechanism of Fe-Nb-B-Y Amorphous Alloys with an Anomalous Exothermic Phenomenon[J]. 金属学报, 2021, 57(4): 542-552.
[8] ZHU Min, OUYANG Liuzhang. Kinetics Tuning and Electrochemical Performance of Mg-Based Hydrogen Storage Alloys[J]. 金属学报, 2021, 57(11): 1416-1428.
[9] HUANG Huogen, ZHANG Pengguo, ZHANG Pei, WANG Qinguo. Comparison of Glass Forming Ability Between U-Co and U-Fe Base Systems[J]. 金属学报, 2020, 56(6): 849-854.
[10] GENG Yaoxiang, WANG Yingmin. Local Structure-Property Correlation of Fe-Based Amorphous Alloys: Based on Minor Alloying Research[J]. 金属学报, 2020, 56(11): 1558-1568.
[11] XU Xiuyue, LI Yanhui, ZHANG Wei. Fabrication of Nanoporous PtRuFe by Dealloying Amorphous Fe(Pt, Ru)B Ribbons and Their Methanol Electrocatalytic Properties[J]. 金属学报, 2020, 56(10): 1393-1400.
[12] Min LI, Jing LIU, Qingwei JIANG. Effect of Annealing Temperature on Tensile Fracture Behavior of ARB-Cu at Room Temperature[J]. 金属学报, 2017, 53(8): 1001-1010.
[13] Hongyang XU,Haibo KE,Huogen HUANG,Pei ZHANG,Pengguo ZHANG,Tianwei LIU. Nanoindentation Creep Behavior of U65Fe30Al5 Amorphous Alloy[J]. 金属学报, 2017, 53(7): 817-823.
[14] Dianguo MA,Yingmin WANG,Kunio YUBUTA,Yanhui LI,Wei ZHANG. Effect of Co Content on the Structure and Magnetic Properties of Melt-Spun Fe55-xCoxPt15B30 Alloys[J]. 金属学报, 2017, 53(5): 609-614.
[15] Huogen HUANG,Hongyang XU,Pengguo ZHANG,Yingmin WANG,Haibo KE,Pei ZHANG,Tianwei LIU. U-Cr Binary Alloys with Anomalous Glass-Forming Ability[J]. 金属学报, 2017, 53(2): 233-238.
No Suggested Reading articles found!