Please wait a minute...
Acta Metall Sin  2018, Vol. 54 Issue (10): 1442-1450    DOI: 10.11900/0412.1961.2018.00134
Current Issue | Archive | Adv Search |
Effect of Electric-Magnetic Compound Field on the Microstructure and Crack in Solidified Ni60 Alloy
Yinghua LIN1,2, Ying YUAN1,2, Liang WANG1,2, Yong HU1,2, Qunli ZHANG1,2, Jianhua YAO1,2()
1 Institute of Laser Advanced Manufacturing, Zhejiang University of Technology, Hangzhou 310014, China
2 Zhejiang Provincial Collaborative Innovation Center of High-End Laser Manufacturing Equipment, Hangzhou 310014, China
Cite this article: 

Yinghua LIN, Ying YUAN, Liang WANG, Yong HU, Qunli ZHANG, Jianhua YAO. Effect of Electric-Magnetic Compound Field on the Microstructure and Crack in Solidified Ni60 Alloy. Acta Metall Sin, 2018, 54(10): 1442-1450.

Download:  HTML  PDF(5527KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Ni60 alloy has been widely used in many application fields due to its excellent wear resistance, corrosion resistance and high temperature oxidation resistance. However, uneven microstructure was easily formed due to the effect of heat shock and heat accumulation during laser multi-track overlap process. Moreover, Ni60 alloy powder was composed of a variety of elements. The composition segregation and high content CrB, (Cr, Fe)23C6 were easily present in the coating during the laser cladding process, which can easily lead to the cracking of Ni60 alloy coating. In this work, multi-layer Ni60 alloy coating was prepared by electric-magnetic compound field assisted laser cladding. Synthesis of Ni60 alloy coating was analyzed by coloring agent, OM, SEM, EDS, XRD and microhardness tester. The results showed that cracks and large pores were to appear at the coating when the electric-magnetic compound field was not applied, and the molding quality was also poor. When the electric-magnetic compound field was applied, the surface cracks of Ni60 alloy coating were suppressed, the pores were eliminated, and the molding quality of the coating was also improved. Meanwhile, the particle size of the brittle phase (CrB, (Cr, Fe)23C6) was decreased from 4~6 μm to 2~4 μm by the aid of the electric-magnetic compound field, and the degree of particle cluster was also reduced, which was beneficial to the elimination of the internal crack. XRD, microstructure and microhardness analysis results showed that the brittle phase content, particle segregation, lattice distortion and hardness were reduced under the condition of electric-magnetic compound field, leading to the decrease of crack initiation probability, so the crack of Ni60 alloy coating was remarkably reduced.

Key words:  Ni60 alloy      laser cladding      electric-magnetic compound field      crack     
Received:  11 April 2018     
ZTFLH:  TN249  
  TG156.99  
Fund: Supported by National Key Research and Development Program of China (No.2017YFB1103601), National Natural Science Foundation of China (No.51475429) and China Postdoctoral Science Foundation (No.2017M610376)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2018.00134     OR     https://www.ams.org.cn/EN/Y2018/V54/I10/1442

Fig.1  Schematic of laser cladding process with an electric-magnetic compound field (EMCF)
Fig.2  Surface dye inspection images of Ni60 alloy coatings without (a) and with (b) EMCF
Fig.3  Vertical section OM images of Ni60 alloy coatings without (a) and with (b) EMCF
Fig.4  Thicknesses of coatings at different positions without and with EMCF
Fig.5  XRD spectra of top layer (a) and bottom layer (b) of Ni60 alloy coatings without and with EMCF
Fig.6  Cross-sectional SEM images of Ni60 alloy coating without EMCF
(a) first pass (b) fifth pass
Fig.7  Low (a) and locally high (b) magnified SEM images of second pass of Ni60 alloy coating without EMCF
Position C Si Cr Fe Ni Mo
1 41.06 1.28 50.24 5.40 1.78 0.24
2 39.93 0.56 11.27 29.35 18.30 0.59
3 39.28 1.30 47.36 8.16 3.63 0.27
4 39.21 0.45 13.63 28.51 17.73 0.47
5 37.63 0.56 48.07 9.10 4.42 0.22
6 36.53 0.39 20.41 27.30 15.16 0.21
7 37.92 0.54 45.13 10.34 5.82 0.25
8 35.83 0.67 17.28 25.76 20.23 0.23
Table 1  EDS results of different positions marked in Figs.6 and 8 (atomic fraction / %)
Fig.8  Cross-sectional SEM images of Ni60 alloy coating with EMCF
(a) first pass (b) fifth pass
Fig.9  Microhardnesses of cross section of first pass Ni60 alloy coatings without and with EMCF
Fig.10  Schematics of phase segregation without EMCF
(a) melting stage
(b) monotectic early stage
(c) monotectic late stage
(d) eutectic reaction stage
[1] Yao J H, Yang L J, Li B, et al.Beneficial effects of laser irradiation on the deposition process of diamond/Ni60 composite coating with cold spray[J]. Appl. Surf. Sci., 2015, 330: 300
[2] Wen Z H, Bai Y, Yang J F, et al.Effect of vacuum re-melting on the solid particles erosion behavior of Ni60-NiCrMoY composite coatings prepared by plasma spraying[J]. Vacuum, 2016, 134: 73
[3] Xu B S, Fang J X, Dong S Y, et al.Heat-affected zone microstructure evolution and its effects on mechanical properties for laser cladding FV520B stainless steel[J]. Acta Metall. Sin., 2015, 52: 1(徐滨士, 方金祥, 董世运等. FV520B不锈钢激光熔覆热影响区组织演变及其对力学性能的影响[J]. 金属学报, 2015, 52: 1)
[4] Ocelík V, Furár I, De Hosson J T M. Microstructure and properties of laser clad coatings studied by orientation imaging microscopy[J]. Acta Mater., 2010, 58: 6763
[5] Yao J H, Yang L J, Li B, et al.Characteristics and performance of hard Ni60 alloy coating produced with supersonic laser deposition technique[J]. Mater. Des., 2015, 83: 26
[6] Lu X L, Liu X B, Yu P C, et al.Synthesis and characterization of Ni60-hBN high temperature self-lubricating anti-wear composite coatings on Ti6Al4V alloy by laser cladding[J]. Opt. Laser Technol., 2016, 78: 87
[7] Ma Q S, Li Y J, Wang J, et al.Microstructure evolution and growth control of ceramic particles in wide-band laser clad Ni60/WC composite coatings[J]. Mater. Des., 2016, 92: 897
[8] Zhang J, Hu Y, Tan X J, et al.Microstructure and high temperature tribological behavior of laser cladding Ni60A alloys coatings on 45 steel substrate[J]. Trans. Nonferrous Met. Soc. China, 2015, 25: 1525
[9] Shu D, Li Z G, Zhang K, et al.In situ synthesized high volume fraction WC reinforced Ni-based coating by laser cladding[J]. Mater Lett., 2017, 195: 178
[10] Wang L, Yao J H, Hu Y, et al.Influence of electric-magnetic compound field on the WC particles distribution in laser melt injection[J]. Surf. Coat. Technol., 2017, 315: 32
[11] Wang L, Yao J H, Hu Y, et al.Suppression effect of a steady magnetic field on molten pool during laser remelting[J]. Appl. Surf. Sci., 2015, 351: 794
[12] Bachmann M, Avilov V, Gumenyuk A, et al.About the influence of a steady magnetic field on weld pool dynamics in partial penetration high power laser beam welding of thick aluminium parts[J]. Int. J. Heat. Mass. Transfer, 2013, 60: 309
[13] Rong Y M, Xu J J, Cao H Y, et al.Influence of steady magnetic field on dynamic behavior mechanism in full penetration laser beam welding[J]. J. Manuf. Process., 2017, 26: 399
[14] Chen J C, Wei Y H, Zhan X H, et al.Melt flow and thermal transfer during magnetically supported laser beam welding of thick aluminum alloy plates[J]. J. Mater. Process. Technol., 2018, 254: 325
[15] Wang L, Wu C S, Chen J, et al.Influence of the external magnetic field on fluid flow, temperature profile and humping bead in high speed gas metal arc welding[J]. Int. J. Heat Mass Transfer, 2018, 116: 1282
[16] Wen Z H, Bai Y, Yang J F, et al.Corrosion resistance of vacuum re-melted Ni60-NiCrMoY alloy coatings[J]. J. Alloys Compd., 2017, 711: 659
[17] Luo F, Cockburn A, Sparkes M, et al.Performance characterization of Ni60-WC coating on steel processed with supersonic laser deposition[J]. Defence Technol., 2015, 11: 35
[18] Chen G, Gao Z Y.Effect of welding processing parameters on porosity formation of mild steel treated by CO2 laser deep penetration welding[J]. Acta Metall. Sin., 2013, 49: 181(陈高, 高子英. 焊接工艺参数对低碳钢CO2激光深熔焊接气孔形成的影响[J]. 金属学报, 2013, 49: 181)
[19] Wei H L, Elmer J W, DebRoy T. Crystal growth during keyhole mode laser welding[J]. Acta Mater., 2017, 133: 10
[20] Chen M H, Xu J N, Xin L J, et al.Effect of keyhole characteristics on porosity formation during pulsed laser-GTA hybrid welding of AZ31B magnesium alloy[J]. Opt. Laser Eng., 2017, 93: 139
[21] Ma Q S, Li Y J, Wang J, et al.Investigation on cored-eutectic structure in Ni60/WC composite coatings fabricated by wide-band laser cladding[J]. J. Alloys Compd., 2015, 645: 151
[22] Cai Y C, Luo Z, Feng M N, et al.The effect of TiC/Al2O3 composite ceramic reinforcement on tribological behavior of laser cladding Ni60 alloys coatings[J]. Surf. Coat. Technol., 2016, 291: 222
[23] Wen P, Shinozaki K, Yamamoto M.Experimental research and numerical simulation of solidification crack during laser welding of ring structure[J]. Acta Metall. Sin., 2011, 47: 1241(温鹏, 荻崎贤二, 山本元道. 环形结构激光焊接凝固热裂纹的实验研究和数值模拟[J]. 金属学报, 2011, 47: 1241)
[24] Na S, Yoon D, Kim J, et al.An evaluation of the fatigue crack propagation rate for powder metallurgical nickel-based superalloys using the DCPD method at elevated temperatures[J]. Int. J. Fatigue., 2017, 101: 27
[25] Yan F, Liu S, Hu C J, et al.Liquation cracking behavior and control in the heat affected zone of GH909 alloy during Nd: YAG laser welding[J]. J. Mater. Process. Technol., 2017, 244: 44
[26] Ye X, Hua X M, Wang M, et al.Controlling hot cracking in Ni-based Inconel-718 superalloy cast sheets during tungsten inert gas welding[J]. J. Mater. Process. Technol., 2015, 222: 381
[1] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[2] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] MU Yahang, ZHANG Xue, CHEN Ziming, SUN Xiaofeng, LIANG Jingjing, LI Jinguo, ZHOU Yizhou. Modeling of Crack Susceptibility of Ni-Based Superalloy for Additive Manufacturing via Thermodynamic Calculation and Machine Learning[J]. 金属学报, 2023, 59(8): 1075-1086.
[4] HAN Weizhong, LU Yan, ZHANG Yuheng. Mechanism of Ductile-to-Brittle Transition in Body-Centered-Cubic Metals:A Brief Review[J]. 金属学报, 2023, 59(3): 335-348.
[5] YANG Du, BAI Qin, HU Yue, ZHANG Yong, LI Zhijun, JIANG Li, XIA Shuang, ZHOU Bangxin. Fractal Analysis of the Effect of Grain Boundary Character on Te-Induced Brittle Cracking in GH3535 Alloy[J]. 金属学报, 2023, 59(2): 248-256.
[6] CHANG Litao. Corrosion and Stress Corrosion Crack Initiation in the Machined Surfaces of Austenitic Stainless Steels in Pressurized Water Reactor Primary Water: Research Progress and Perspective[J]. 金属学报, 2023, 59(2): 191-204.
[7] PENG Zhiqiang, LIU Qian, GUO Dongwei, ZENG Zihang, CAO Jianghai, HOU Zibing. Independent Change Law of Mold Heat Transfer in Continuous Casting Based on Big Data Mining[J]. 金属学报, 2023, 59(10): 1389-1400.
[8] QI Zhao, WANG Bin, ZHANG Peng, LIU Rui, ZHANG Zhenjun, ZHANG Zhefeng. Effects of Stress Ratio on the Fatigue Crack Growth Rate Under Steady State of Selective Laser Melted TC4 Alloy with Defects[J]. 金属学报, 2023, 59(10): 1411-1418.
[9] ZHU Guoliang, KONG Decheng, ZHOU Wenzhe, HE Jian, DONG Anping, SHU Da, SUN Baode. Research Progress on the Crack Formation Mechanism and Cracking-Free Design of γ' Phase Strengthened Nickel-Based Superalloys Fabricated by Selective Laser Melting[J]. 金属学报, 2023, 59(1): 16-30.
[10] MA Zhimin, DENG Yunlai, LIU Jia, LIU Shengdan, LIU Honglei. Effect of Quenching Rate on Stress Corrosion Cracking Susceptibility of 7136 Aluminum Alloy[J]. 金属学报, 2022, 58(9): 1118-1128.
[11] ZHOU Hongwei, GAO Jianbing, SHEN Jiaming, ZHAO Wei, BAI Fengmei, HE Yizhu. Twin Boundary Evolution Under Low-Cycle Fatigue of C-HRA-5 Austenitic Heat-Resistant Steel at High Temperature[J]. 金属学报, 2022, 58(8): 1013-1023.
[12] YANG Qinzheng, YANG Xiaoguang, HUANG Weiqing, SHI Duoqi. Propagation Behaviors of Small Cracks in Powder Metallurgy Nickel-Based Superalloy FGH4096[J]. 金属学报, 2022, 58(5): 683-694.
[13] FENG Kai, GUO Yanbing, FENG Yulei, YAO Chengwu, ZHU Yanyan, ZHANG Qunli, LI Zhuguo. Microstructure Controlling and Properties of Laser Cladded High Strength and High Toughness Fe-Based Coatings[J]. 金属学报, 2022, 58(4): 513-528.
[14] LI Xifeng, LI Tianle, AN Dayong, WU Huiping, CHEN Jieshi, CHEN Jun. Research Progress of Titanium Alloys and Their Diffusion Bonding Fatigue Characteristics[J]. 金属学报, 2022, 58(4): 473-485.
[15] YU Chun, XU Jijin, WEI Xiao, LU Hao. Research Status of Ductility-Dip Crack Occurring in Nuclear Nickel-Based Welding Materials[J]. 金属学报, 2022, 58(4): 529-540.
No Suggested Reading articles found!