Please wait a minute...
Acta Metall Sin  2018, Vol. 54 Issue (5): 682-700    DOI: 10.11900/0412.1961.2018.00080
Special Issue for the Solidification of Metallic Materials Current Issue | Archive | Adv Search |
Progress in the Solidification of Monotectic Alloys
Jiuzhou ZHAO(), Hongxiang JIANG
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

Jiuzhou ZHAO, Hongxiang JIANG. Progress in the Solidification of Monotectic Alloys. Acta Metall Sin, 2018, 54(5): 682-700.

Download:  HTML  PDF(6614KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Monotectic alloys or alloys with a miscibility gap in the liquid state are a broad kind of materials. Many of them have great potential applications in industry. However, these alloys have an essential drawback that the miscibility gap poses problems during solidification. When a homogeneous single phase liquid is cooled into the miscibility gap, the components are no longer miscible and two liquid phases develop. Generally, the liquid-liquid decomposition begins with the nucleation of the minority phase droplets. These droplets grow and coarsen then. They can also settle or float due to the specific gravity differences between phases and migrate due to the temperature gradient or concentration gradient. The motions of the droplets cause the formation of a microstructure with serious phase segregation. Researchs have been carried out to investigate the solidification process of monotectic alloys on ground as well as under the microgravity conditions in space. The feasibility of controlling the microstructures of monotectic alloys by using electric field, magnetic field, microalloying, etc. has been investigated. Meanwhile, plenty of efforts have been made to model and simulate the microstructure evolution of monotectic alloy during the L-L phase transformation. This article will review the research work in this field during the last few decades and propose some perspectives for future studies on the solidification process of monotectic alloys.

Key words:  monotectic alloy      solidification      thermodynamic      thermophysical property      simulation     
Received:  06 March 2018     
ZTFLH:  TG14  
  TG2  
Fund: Supported by National Natural Science Foundation of China (Nos.51771210, 51471173 and 51501207) and China's Manned Space Station Project (No.TGJZ800-2-RW024)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2018.00080     OR     https://www.ams.org.cn/EN/Y2018/V54/I5/682

Fig.1  Relationship between ΔGm and xB for A-B binary monotectic alloys (A, B—the two components of A-B binary monotectic alloys, ΔGm—the molar Gibbs free energy of mixing, ΔHm—the molar mixing enthalpy, ΔSm—the molar mixing entropy, xB—the molar or atomic fraction of the component B, T—the absolute temperature, TC—the critical temperature)
(a) T>TC (b) T<TC
Fig.2  Schematic phase diagram of the binary monotectic alloy showing the miscibility gap (solid line) and spinodal line (dashed line)
Fig.3  Measured and calculated temperature (T) profile, the binodal line temperature (Tb), and the nucleation rate in front of the solidification interface along the central z-axes for the Al-5%Pb (mass fraction) sample continuously solidified at the rate of 5 mm/s[131]
Fig.4  Maximum nucleation rate (Imax) of the minority phase droplets (MPDs) and the axial vector of the flow velocity (VCZ) in front of the solidification interface along the radial direction for the Al-5%Pb (mass fraction) alloy continuously solidified at the rate of 5 mm/s[96]
Fig.5  Convective velocities of the melt in front of the solidification interface for the Al-5%Pb (mass fraction) samples continuously solidified at the rate of 5 mm/s in the magnetic field of different strengths[66]
Fig.6  Maximum nucleation rates of the MPDs at the solidification interface along the radial direction for the Al-5%Pb (mass fraction) alloys continuously solidified at the rate of 5 mm/s in the static magnetic field of different strengths [66]
Fig.7  Volume fraction of the MPDs in the melt at the solidification interface along the radial direction for the Al-5%Pb (mass fraction) alloys continuously solidified at the rate of 5 mm/s in the magnetic field of different strengths [96]
Fig.8  Microstructures of the Al-7%Pb (mass fraction) alloys continuously solidified at the rate of 8 mm/s under the effect of the direct current of 0 A/cm2 (a), 170 A/cm2 (b) and 438 A/cm2 (c), respectively[63]
Fig.9  Effect of the electric current pulses (ECPs) on the microstructure of Bi-10%Cu-10%Sn (a, b) and Cu-25%Bi-25%Sn (mass fraction) (c, d) alloys continuously solidified at the rate of 10 mm/s[65]
(a, c) without the ECP treatment
(b, d) with the ECP of the peak current density of 3×108 A/m2, the frequency of the ECPs is 50 Hz, the duration of each electro-pulse is 6 μs[65]
Fig.10  Microstructures of Al-5%Pb-xBi (mass fraction) alloys with x=0 (a) and x=0.10% (b) continuously solidified at the rate of 10 mm/s[180]
Fig.11  Marangoni migration velocities for r direction (uM-r), z direction (uM-z) and Stokes migration velocity uSof the Pb-rich droplets with average size as a function of position in front of the solidification interface for Al-5.0%Pb-xBi (mass fraction) alloys with x=0 and x=0.10%[180]
Fig.12  Microstructures of Al-9.0%Bi-xTiC (mass fraction) alloys with x=0 (a), x=0.034% (b), x=0.05% (c), x=0.066% (d), x=0.084% (e) and x=0.126% (f)[180]
[1] Zhao J Z, Ratke L, Feuerbacher B.Microstructure evolution of immiscible alloys during cooling through the miscibility gap[J]. Modelling Simul. Mater. Sci. Eng., 1998, 6: 123
[2] Ratke L, Diefenbach S.Liquid immiscible alloys[J]. Mater. Sci. Eng., 1995, R15: 263
[3] Zhao J Z, Ahmed T, Jiang H X, et al.Solidification of immiscible Alloys: A review[J]. Acta Metall. Sin.(Engl. Lett.), 2017, 30: 1
[4] Man T N, Zhang L, Xiang Z L, et al.Effects of adding Ti on microstructure and properties of Al-Bi immiscible alloy[J]. Acta Phys. Sin., 2018, 67: 036101(满田囡, 张林, 项兆龙等. 添加Ti对Al-Bi难混溶合金组织和性能的影响[J]. 物理学报, 2018, 67: 036101)
[5] Gouthama, Rudrakshi G B, Ojha S N. Spray Forming and wear characteristics of liquid immiscible alloy[J]. J. Mater. Process. Technol, 2007, 189: 224
[6] Kang Z Q, Yang X, Feng G H, et al.Effect of Bi-content on microstructure evolution of Al-Bi monotectic alloy[J]. Chin. J. Mater. Res., 2016, 30: 603(康智强, 杨雪, 冯国会等. Bi含量对Al-Bi偏晶合金显微组织演变的影响[J]. 材料研究学报, 2016, 30: 603)
[7] Song K X, Zhou Y J, Zhao P F, et al.Cu-10Sn-4Ni-3Pb alloy prepared by crystallization under pressure: An experimental study[J]. Acta Metall. Sin.(Engl. Lett.), 2013, 26: 199
[8] Li W S, Li Y M, Zhang J, et al.Progress in the research and application of silver-based electrical contact materials[J]. Mater. Rev., 2011, 25(6): 34(李文生, 李亚明, 张杰等. 银基电接触材料的应用研究及制备工艺[J]. 材料导报, 2011, 25(6): 34)
[9] He J, Zhao J Z, Ratke L.Solidification microstructure and dynamics of metastable phase transformation in undercooled liquid Cu-Fe alloys[J]. Acta Mater., 2006, 54: 1749
[10] Shi R P, Wang Y, Wang C P, et al.Self-organization of core-shell and core-shell-corona structures in small liquid droplets[J]. Appl. Phys. Lett., 2011, 98: 204106
[11] Song X, Ning P, Wang C, et al.Research on the low temperature catalytic hydrolysis of COS and CS2 over walnut shell biochar modified by Fe-Cu mixed metal oxides and basic functional groups[J]. Chem. Eng. J., 2017, 314: 418
[12] Li X M, Kong Y, Zhou S J, et al.In situ incorporation of well-dispersed Cu-Fe oxides in the mesochannels of AMS and their utilization as catalysts towards the Fenton-like degradation of methylene blue[J]. J. Mater. Sci., 2017, 52: 1432
[13] Wang Y F, Gao H Y, Han Y F, et al.First-principles study on the solubility of iron in dilute Cu-Fe-X alloys[J]. J. Alloys Compd., 2017, 691: 992
[14] Terzieff P, Lück R.Magnetic investigations in liquid Al-In[J]. J. Alloys Compd., 2003, 360: 205
[15] Liu Y, Guo J J, Su Y Q, et al.Microstructures of rapidly solidified Al-In immiscible alloy[J]. Trans. Nonferrous Met. Soc. China, 2001, 11(1): 84
[16] Cui H B, Guo J J, Bi W S, et al.The evolution of unidirectional solidification microstructure of the Al-In monotectic alloys in high temperature gradient[J]. Acta Metall. Sin., 2004, 40: 1253(崔红保, 郭景杰, 毕维生等. 高温度梯度下Al-In偏晶合金定向凝固组织的演化规律[J]. 金属学报, 2004, 40: 1253)
[17] Wang C P, Liu X J, Ohnuma I, et al.Formation of immiscible alloy powders with egg-type microstructure[J]. Science, 2002, 297: 990
[18] Wu Y Q, Li C J.Investigation of the phase separation of Al-Bi immiscible alloy melts by viscosity measurements[J]. J. Appl. Phys., 2012, 111: 073521
[19] Lu W Q, Zhang S G, Li J G.Segregation driven by collision and coagulation of minor droplets in Al-Bi immiscible alloys under aerodynamic levitation condition[J]. Mater. Lett., 2013, 107: 340
[20] Lu W Q, Zhang S G, Zhang W, et al.Direct observation of the segregation driven by bubble evolution and liquid phase separation in Al-10wt.%Bi immiscible alloy[J]. Scr. Mater., 2015, 102: 19
[21] Wang W L, Li Z Q, Wei B.Macrosegregation pattern and microstructure feature of ternary Fe-Sn-Si immiscible alloy solidified under free fall condition[J]. Acta Mater., 2011, 59: 5482
[22] Lu Y, Wang C P, Gao Y P, et al.Microstructure map for self-organized phase separation during film deposition[J]. Phys. Rev. Lett., 2012, 109: 086101
[23] Jiang H X.Study of the continuous solidification of monotectic alloys under the effect of electric current [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2014(江鸿翔. 电流作用下偏晶合金连续凝固过程研究 [D]. 沈阳: 中国科学院金属研究所, 2014)
[24] Lacy L L, Otto G. The behavior of immiscible liquids in space [A]. Thermophysics and Heat Transfer Conference [C]. Bosto: AIAA, 1974: No.74-668
[25] Ahlborn H, Loehberg K. Aluminium-indium-experiment SOLUOG-A sounding rocket experiment on immiscible alloys [A]. 17th Aerospace Sciences Meeting [C]. New orieans: AIAA, 1979: No.79-0172
[26] Potard C. Directional solidification of Al-In alloys at microgravity-results of basic preparatory investigations [A]. 17th Aerospace Sciences Meeting [C]. New orieans: AIAA, 1979: No.79-1012
[27] Carlberg T, Fredriksson H.The influence of microgravity on the solidification of Zn-Bi immiscible alloys[J]. Metall. Trans., 1980, 11A: 1665
[28] Fujii H, Kimura T, Kitaguchi H, et al.Fabrication of uniform Al-Pb-Bi monotectic alloys under microgravity utilizing the space shuttle: Microstructure and superconducting properties[J]. J. Mater. Sci., 1995, 30: 3429
[29] Lin L Y.Proceedings of the First Chinese Symposium on Microgravity Science and Space Experiments [M]. Beijing: China Science and Technology Press, 1987: 71(林兰英. 中国微重力科学与空间实验 [M]. 北京: 中国科学技术出版社, 1987: 71)
[30] Huang Q, Luo X H, Li Y Y.An alloy solidification experiment conducted on Shenzhou spacecraft[J]. Adv. Space Res., 2005, 36: 86
[31] Huang Z.Microstructural feature in metallic alloy solidified under microgravity[J]. Scr. Metall. Mater., 1991, 25: 149
[32] Kneissl A, Fischmeister H.Particle coarsening in immiscible zinc-lead alloys under microgravity [A]. 5th European Symposium on Material Science under Microgravity. Results of Spacelab 1[C]. Noordwijk: ESA Scientific & Technical Publications Branch, 1984: 63
[33] Walter H U.Preparation of dispersion alloys-component separation during cooling and solidification of dispersions of immiscible alloys [A]. Effect of Gravity on the Solidification of Immiscible Alloys[C]. Sweden: ESA, 1984: 47
[34] Gelles S H, Worth A J M. Microgravity studies in the liquid-phase immiscible system: Aluminum-indium[J]. AIAA J., 1978, 16: 431
[35] Zhao J Z.Separation mechanism of liquid phases and solidification behavior of Zn-Pb monotectic alloy [D]. Harbin: Harbin Institute of Technology, 1994(赵九洲. Zn-Pb偏晶合金液相分离机制及凝固行为 [D]. 哈尔滨: 哈尔滨工业大学, 1994)
[36] Jia J, Zhao J Z, Zhang J H, et al.The solidification of immiscible alloy in orthogonal electromagnetic field[J]. Chin. J. Mech. Eng., 1991, 4: 90
[37] Ratke L, Uffelmann D.Coarsening processes in liquid dispersions[J]. Mater. Sci. Forum, 1991, 77: 69
[38] Liu N, Liu F, Chen Z, et al.Liquid-phase separation in rapid solidification of undercooled Fe-Co-Cu melts[J]. J. Mater. Sci. Technol., 2012, 28: 622
[39] Dai R R, Zhang S G, Guo X, et al.Formation of core-type microstructure in Al-Bi monotectic alloys[J]. Mater. Lett., 2011, 65: 322
[40] Wang W L, Wu Y H, Li L H, et al.Liquid-liquid phase separation of freely falling undercooled ternary Fe-Cu-Sn alloy[J]. Sci. Rep., 2015, 5: 16335
[41] Schaffer P L, Mathiesen R H, Arnberg L.L2 droplet interaction with α-Al during solidification of hypermonotectic Al-8wt.% Bi alloys[J]. Acta Mater., 2009, 57: 2887
[42] Osório W R, Freitas E S, Garcia A.EIS and potentiodynamic polarization studies on immiscible monotectic Al-In alloys[J]. Electrochim. Acta, 2013, 102: 436
[43] Shi R P, Wang C P, Wheeler D, et al.Formation mechanisms of self-organized core/shell and core/shell/corona microstructures in liquid droplets of immiscible alloys[J]. Acta Mater., 2013, 61: 1229
[44] Luo S B, Wang W L, Chang J, et al.A comparative study of dendritic growth within undercooled liquid pure Fe and Fe50Cu50 alloy[J]. Acta Mater., 2014, 69: 355
[45] Raghavan R, Harzer T P, Chawla V, et al.Comparing small scale plasticity of copper-chromium nanolayered and alloyed thin films at elevated temperatures[J]. Acta Mater., 2015, 93: 175
[46] Liu E Y, Chen T J, Bai Y P.Effects of pouring techniques on the microstructure of Al-Pb bearing materials synthesized by sloping plate method[J]. Foundry Technol., 2010, 31: 17(刘二勇, 陈体军, 白亚平. 浇注工艺对倾斜板制备Al-Pb轴瓦材料显微组织的影响[J]. 铸造技术, 2010, 31: 17)
[47] Liu Y, Guo J J, Jia J, et al.Microstructures of rapidly solidified Al-In immiscible alloys[J]. Acta Metall. Sin., 2000, 36: 1233(刘源, 郭景杰, 贾均等. 快速凝固Al-In偏晶合金的显微结构[J]. 金属学报, 2000, 36: 1233)
[48] Zhao J Z.Formation of the minor phase shell on the surface of hypermonotectic alloy powders[J]. Scr. Mater., 2006, 54: 247
[49] Yan N, Wang W L, Wei B B.Microstructure formation mechanism of Ni-Pb monotectic alloys rapidly solidified in drop tube[J]. Acta Aeronaut. Astronaut. Sin., 2011, 32: 351(闫娜, 王伟丽, 魏炳波. 落管中Ni-Pb偏晶型合金的快速凝固组织特征及形成机制[J]. 航空学报, 2011, 32: 351)
[50] Luo B C, Wang H P, Wei B B.Rapid solidification of ternary Ni-Pb-Cu monotectic alloy under free fall conditions[J]. Chin. J. Nonferrous Met., 2009, 19: 279(罗炳池, 王海鹏, 魏炳波. 自由落体条件下三元Ni-Pb-Cu偏晶合金的快速凝固[J]. 中国有色金属学报, 2009, 19: 279)
[51] Wang Z Y, He J, Yang B J, et al.Liquid-liquid phase separation and formation of two glassy phases in Zr-Ce-Co-Cu immiscible alloys[J]. Acta Metall. Sin., 2016, 52: 1379(王中原, 何杰, 杨柏俊等. Zr-Ce-Co-Cu难混溶合金的液-液相分离和双非晶相形成[J]. 金属学报, 2016, 52: 1379)
[52] He J, Kaban I, Mattern N, et al.Local microstructure evolution at shear bands in metallic glasses with nanoscale phase separation[J]. Sci. Rep., 2016, 6: 25832
[53] Prinz B, Romero A, Ratke L.Casting process for hypermonotectic alloys under terrestrial conditions[J]. J. Mater. Sci., 1995, 30: 4715
[54] He J, Zhao J Z, Wang X F, et al.An experimental study of the rapid continuous solidification of Al-Bi immiscible alloy[J]. Acta Metall. Sin., 2006, 42: 67(何杰, 赵九洲, 王晓峰等. Al-Bi难混溶合金快速连续凝固的实验研究[J]. 金属学报, 2006, 42: 67)
[55] He J, Zhao J Z, Li H L, et al.Directional solidification and microstructural refinement of immiscible alloys[J]. Metall. Mater. Trans., 2008, 39A: 1174
[56] Zhang Q X, Zhao J Z, He J, et al.Rapid directional solidification and its simulation of Al-Pb alloys[J]. Acta Metall. Sin., 2007, 43: 925(张钦霞, 赵九洲, 何杰等. Al-Pb合金的快速定向凝固及其模拟[J]. 金属学报, 2007, 43: 925)
[57] Munitz A, Elder-Randall S P, Abbaschian R. Supercooling effects in Cu-10 wt pct Co alloys solidified at different cooling rates[J]. Metall. Trans., 1992, 23A: 1817
[58] Zhang X H, Ruan Y, Wang W L, et al.Rapid solidification and dendrite growth of ternary Fe-Sn-Ge and Cu-Pb-Ge monotectic alloys[J]. Sci. China, 2007, 37G: 359(张雪华, 阮莹, 王伟丽等. 三元Fe-Sn-Ge和Cu-Pb-Ge偏晶合金相分离与快速凝固研究[J]. 中国科学, 2007, 37G: 359)
[59] Wei B, Herlach D M, Sommer F, et al.Rapid solidification of undercooled eutectic and monotectic alloys[J]. Mater. Sci. Eng., 1993, A173: 357
[60] Zhu D Y, Yang X H, Han X J, et al.Rapid solidification microstructures of Fe-Sn monotectic alloys at deep undercooling[J]. Chin. J. Nonferrous Met., 2003, 13: 328(朱定一, 杨晓华, 韩秀君等. Fe-Sn偏晶合金的深过冷快速凝固组织[J]. 中国有色金属学报, 2003, 13: 328)
[61] Li H L, Zhao J Z.Modelling and simulation of the microstructure formation in a strip cast Al-Pb alloy[J]. Acta Metall. Sin., 2010, 46: 695(李海丽, 赵九洲. Al-Pb偏晶合金连续凝固过程模拟[J]. 金属学报, 2010, 46: 695)
[62] Jiang H X, Zhao J Z.Effect mechanism of a direct current on the solidification of immiscible alloys[J]. Chin. Phys. Lett., 2012, 29: 088104
[63] Jiang H X, Zhao J Z, He J.Solidification behavior of immiscible alloys under the effect of a direct current[J]. J. Mater. Sci. Technol., 2014, 30: 1027
[64] Jiang H X, He J, Zhao J Z.Influence of electric current pulses on the solidification of Cu-Bi-Sn immiscible alloys[J]. Sci. Rep., 2015, 5: 12680
[65] Jiang H X, Zhao J Z, Wang C P, et al.Effect of electric current pulses on solidification of immiscible alloys[J]. Mater. Lett., 2014, 132: 66
[66] Li H L, Zhao J Z.Directional solidification of an Al-Pb alloy in a static magnetic field[J]. Comput. Mater. Sci., 2009, 46: 1069
[67] Yasuda H, Ohnaka I, Fujimoto S, et al.Fabrication of aligned pores in aluminum by electrochemical dissolution of monotectic alloys solidified under a magnetic field[J]. Scr. Mater., 2006, 54: 527
[68] Zheng T X, Zhong Y B, Lei Z S, et al.Effects of high static magnetic field on distribution of solid particles in BiZn immiscible alloys with metastable miscibility gap[J]. J. Alloys Compd., 2015, 623: 36
[69] Wang J, Zhong Y B, Wang C, et al.Physical simulation of homogeneous Zn-Bi monotectic alloy prepared by electric-magnet compound field[J]. Acta Phys. Sin., 2011, 60: 076101(王江, 钟云波, 汪超等. 电磁复合场制备匀质Zn-Bi偏晶合金的物理模拟[J]. 物理学报, 2011, 60: 076101)
[70] Kaban I, K?hler M, Ratke L, et al.Interfacial tension, wetting and nucleation in Al-Bi and Al-Pb monotectic alloys[J]. Acta Mater., 2011, 59: 6880
[71] Kaban I, K?ler M, Ratke L, et al.Phase separation in monotectic alloys as a route for liquid state fabrication of composite materials[J]. J. Mater. Sci., 2012, 47: 8360
[72] K?hler M, Ratke L, Kaban I, et al.Heterogeneous nucleation in hypermonotectic aluminum alloys[J]. IOP Conf. Ser.: Mater. Sci. Eng., 2011, 27: 012005
[73] Wang T M, Cao F, Chen Z N, et al.Three dimensional microstructures and wear resistance of Al-Bi immiscible alloys with different grain refiners[J]. Sci. China Technol. Sci., 2015, 58: 870
[74] Zhao J Z, Li H L, Li H Q, et al.Microstructure formation in centrifugally cast Al-Bi alloys[J]. Comput. Mater. Sci., 2010, 49: 121
[75] Kotadia H R, Das A, Doernberg E, et al.A comparative study of ternary Al-Sn-Cu immiscible alloys prepared by conventional casting and casting under high-intensity ultrasonic irradiation[J]. Mater. Chem. Phys., 2011, 131: 241
[76] Zhai W, Liu H M, Wei B.Liquid phase separation and monotectic structure evolution of ternary Al62.6Sn28.5Cu8.9 immiscible alloy within ultrasonic field[J]. Mater. Lett., 2015, 141: 221
[77] Zhai W, Liu H M, Zuo P F, et al.Effect of power ultrasound on microstructural characteristics and mechanical properties of Al81.3Sn12.3Cu6.4 monotectic alloy[J]. Prog. Nat. Sci.: Mater. Int., 2015, 25: 471
[78] Sun Q, Jiang H X, Zhao J Z, et al.Microstructure evolution during the liquid-liquid phase transformation of Al-Bi alloys under the effect of TiC particles[J]. Acta Mater., 2017, 129: 321
[79] Sun Q, Jiang H X, Zhao J Z, et al.Effect of TiC particles on the liquid-liquid decomposition of Al-Pb alloys[J]. Mater. Des., 2016, 91: 361
[80] Sun Q, Jiang H X, Zhao J Z.Effect of micro-alloying element Bi on solidification and microstructure of Al-Pb alloy[J]. Acta Metall. Sin., 2016, 52: 497(孙倩, 江鸿翔, 赵九洲. 微量元素Bi对Al-Pb合金凝固过程及显微组织的影响[J]. 金属学报, 2016, 52: 497)
[81] Sun Q, Jiang H X, Zhao J Z.Solidification of Al-Pb alloy under the effect of micro-alloying element Ti and C[J]. Mater. Sci. Forum, 2016, 879: 2439
[82] Cao C Z, Chen L Y, Xu J Q, et al.Strengthening Al-Bi-TiC0.7N0.3 nanocomposites by Cu addition and grain refinement[J]. Mater. Sci. Eng., 2016, A651: 332
[83] Guo J J, Liu Y, Jia J, et al.Coarsening mode and microstructure evolution of Al-In hypermonotectic alloy during rapidly cooling process[J]. Scr. Mater., 2001, 45: 1197
[84] Wu M H, Ludwig A, Ratke L.Modelling the solidification of hypermonotectic alloys[J]. Modell. Simul. Mater. Sci. Eng., 2003, 11: 755
[85] Zhao J Z, Ratke L.A model describing the microstructure evolution during a cooling of immiscible alloys in the miscibility gap[J]. Scr. Mater., 2004, 50: 543
[86] Zhao J Z, Li H L, Zhang X F, et al.Nucleation determined microstructure formation in immiscible alloys[J]. Mater. Lett., 2008, 62: 3779
[87] Wang C P, Liu X J, Shi R P, et al.Design and formation mechanism of self-organized core/shell structure composite powder in immiscible liquid system[J]. Appl. Phys. Lett., 2007, 91: 141904
[88] Li H L, Zhao J Z.Convective effect on the microstructure evolution during a liquid-liquid decomposition[J]. Appl. Phys. Lett., 2008, 92: 241902
[89] Alkemper J, Ratke L.Concurrent nucleation, growth and sedimentation during solidification of Al-Bi alloys[J]. Z. Metallkd, 1994, 85: 365
[90] Ratke L.Coarsening of liquid Al-Pb dispersions under reduced gravity conditions[J]. Mater. Sci. Eng., 1995, A203: 399
[91] Wu M H, Ludwig A, Ratke L.Modeling of Marangoni-induced droplet motion and melt convection during solidification of hypermonotectic alloys[J]. Metall. Mater. Trans., 2003, 34A: 3009
[92] Zhao L, Zhao J Z.Microstructure formation in a gas-atomized drop of Al-Pb-Sn immiscible alloy[J]. Metall. Mater. Trans., 2012, 43A: 5019
[93] Zhao J Z, Jiang H X, Sun Q, et al.Progress of research on solidification process and microstructure control of immiscible alloys[J]. Mater. China, 2017, 36: 252(赵九洲, 江鸿翔, 孙倩等. 偏晶合金凝固过程及凝固组织控制方法研究进展[J]. 中国材料进展, 2017, 36: 252)
[94] Jia J, Zhao J Z, Guo J J, et al.Immiscible Alloys and Their Preparation Technologies [M]. Harbin: Harbin Institute of Technology Press, 2002: 45(贾均, 赵九洲, 郭景杰等. 难混溶合金及其制备技术 [M]. 哈尔滨: 哈尔滨工业大学出版社, 2002: 45)
[95] Wang C L.Phase Diagrams and its Application [M]. Beijing: Higher Education Press, 2008: 52(王崇琳. 相图理论及其应用 [M]. 北京: 高等教育出版社, 2008: 52)
[96] Li H L.Study of the mechanism of the microstructure evolution in directionally solidified monotectic alloys [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2009(李海丽. 偏晶合金定向凝固过程中组织演变机理研究 [D]. 沈阳: 中国科学院金属研究所, 2009)
[97] Zhao L.Study of the rapid solidification of ternary immiscible alloys [D]. Shenyang: University of Chinese Academy of Sciences, 2012(赵雷. 三元难混溶合金的快速凝固过程研究 [D]. 沈阳: 中国科学院大学, 2012)
[98] Becker R.Die keimbildung bei der ausscheidung in metallischen mischkristallen[J]. Ann. Phys., 1938, 424: 128
[99] Cahn J W, Hilliard J E.Free energy of a nonuniform system. I. Interfacial free energy[J]. J. Chem. Phys., 1958, 28: 258
[100] Moldover M R.Interfacial tension of fluids near critical points and two-scale-factor universality[J]. Phys. Rev., 1985, 31A: 1022
[101] Chatain D, Eustathopoulos N, Desre P.The interfacial tensions and wetting in the two-liquids region of a regular solution[J]. J. Colloid Interface Sci., 1981, 83: 384
[102] Kaptay G. Modelling interfacial energies in metallic systems [J]. Mater. Sci. Forum, 2005, 473-474: 1
[103] Kaptay G.A Calphad-compatible method to calculate liquid/liquid interfacial energies in immiscible metallic systems[J]. Calphad, 2008, 32: 338
[104] Merkwitz M, Hoyer W.Liquid-liquid interfacial tension in the demixing metal system Al-Pb and Al-In[J]. Z. Metallkd., 1999, 90: 363
[105] Takamichi I,Roderick I L G, translated by Xian A P, Wang L W. The Physical Properties of Liquid Metals [M]. Beijing: Science Press, 2006: 159(Takamichi I, Roderick I L G著, 冼爱平, 王连文译. 液态金属的物理性能 [M]. 北京: 科学出版社, 2006: 159)
[106] Brooks R F, Dinsdale A T, Quested P N.The measurement of viscosity of alloys—A review of methods, data and models[J]. Meas. Sci. Technol., 2005, 16: 354
[107] Dinsdale A T, Quested P N.The viscosity of aluminium and its alloys—A review of data and models[J]. J. Mater. Sci., 2004, 39: 7221
[108] Wu Y Q, Li C J.Investigation of the phase separation of Al-Bi immiscible alloy melts by viscosity measurements[J]. J. Appl. Phy., 2012, 111: 073521
[109] Andrade E N da C. A theory of the viscosity of liquids.—Part I[J]. London, Edinburgh, Dublin Philos. Mag. J. Sci., 1934, 17: 497
[110] Kaptay G.A unified equation for the viscosity of pure liquid metals[J]. Z. Metallkd., 2005, 96: 1
[111] Grosse A V.The viscosity of liquid metals and an empirical relationship between their activation energy of viscosity and their melting points[J]. J. Inorg. Nucl. Chem., 1961, 23: 333
[112] Iida T, Morita Z, Takeuchi S.Viscosity measurements of pure liquid metals by the capillary Method[J]. J. Jpn. Inst. Met., 1975, 39: 1169(飯田孝道, 森田善一郎, 竹内栄. 細管法によゐ純金属液体の粘度測定[J]. 日本金属学会誌, 1975, 39: 1169)
[113] Frohberg G, Kraatz K H, Wever H. Investigations on self-and interdiffusion in liquid metals [J]. Mater. Sci. Forum, 1987, 15-18: 529
[114] Sutherland W.A dynamical theory of diffusion for non-electrolytes and the molecular mass of albumin[J]. London, Edinburgh, Dublin Philos. Mag. J. Sci., 1905, 9: 781
[115] Kaptay G.A new theoretical equation for temperature dependent self-diffusion coefficients of pure liquid metals[J]. Int. J. Mater. Res., 2008, 99: 14
[116] Roy A K, Chhabra R P.Prediction of solute diffusion coefficients in liquid metals[J]. Metall. Trans., 2008, 19A: 273
[117] Sundquist B E, Oriani R A.Homogeneous nucleation in a miscibility gap system: A critical test of nucleation theory[J]. J. Chem. Phys., 1962, 36: 2604
[118] Uebber N, Ratke L.Undercooling and nucleation within the liquid miscibility gap of Zn-Pb alloys[J]. Scr. Metall. Mater., 1991, 25: 1133
[119] Perepezko J H, Galaup C, Cooper K P.Solidification of undercooled monotectic alloys [A]. Materials Processing in the Reduced Gravity Environment of Space[C]. Amsterdam: Elsevier, 1982: 491
[120] Gránásy L, Ratke L.Homogeneous nucleation within the liquid miscibility gap of Zn-Pb alloys[J]. Scr. Metall. Mater., 1993, 28: 1329
[121] Zener C.Theory of growth of spherical precipitates from solid solution[J]. J. Appl. Phys., 1949, 20: 950
[122] Lifshitz I M, Slyozov V V.The kinetics of precipitation from supersaturated solid solutions[J]. J. Phys. Chem. Solids, 1961, 19: 35
[123] Wagner C.Theorie der alterung von niederschlagen durch umlosen (Ostwald-Reifung)[J]. Z. Elektrochem., 1961, 65: 581
[124] Kneissl A, Fischmeister H.Solidification and Ostwald ripening of near-monotectic zinc-lead alloys[J]. Science, 1984, 225: 198
[125] Zhao J, Ratke L.Repeated nucleation of minority phase droplets induced by drop motion[J]. Scr. Mater., 1998, 39: 181
[126] Marqusee J A, Ross J.Theory of Ostwald ripening: Competitive growth and its dependence on volume fraction[J]. J. Chem. Phys., 1984, 80: 536
[127] Ratke L, Host M.Convective contributions to Ostwald Ripening in dispersions at low Peclet numbers[J]. J. Colloid Interface Sci., 1991, 141: 226
[128] Zhao J Z. The kinetics of the liquid-liquid decomposition under the rapid solidification conditions of gas atomization [J]. Mater. Sci. Eng., 2007, A454-455: 637
[129] Zhao J Z, Guo J J, Jia J, et al.Collision coarsening of dispersion droplets in solidification process of monotectic alloy[J]. Trans. Nonferrous Met. Soc. China, 1995, 2: 85
[130] Zhao J Z, Jia J, Li Q C.Collision coarsening of second phase droplets during liquid-liquid phase transfomation of monotectic alloy[J]. Chin. J. Mater. Res., 1995, 9: 241(赵九洲, 贾均, 李庆春. 偏晶合金液-液相变过程中第二相液滴的碰撞粗化[J]. 材料研究学报, 1995, 9: 241)
[131] Li H L, Zhao J Z, Zhang Q X, et al.Microstructure formation in a directionally solidified immiscible alloy[J]. Metall. Mater. Trans., 2008, 39A: 3308
[132] Zhao L, Zhao J Z.Rapid solidification behavior of Cu-Co-Fe alloy[J]. J. Mater. Res., 2013, 28: 1203
[133] Zhou F M, Sun D K, Zhu M F.Lattice Boltzmann modelling of liquid-liquid phase separation of monotectic alloys[J]. Acta Phys. Sin., 2010, 59: 3394(周丰茂, 孙东科, 朱鸣芳. 偏晶合金液-液相分离的格子玻尔兹曼方法模拟[J]. 物理学报, 2010, 59: 3394)
[134] Wang W L, Wu Y H, Li L H, et al.Homogeneous granular microstructures developed by phase separation and rapid solidification of liquid Fe-Sn immiscible alloy[J]. J. Alloys Compd., 2017, 693: 650
[135] Zhao J Z, Ratke L, Jia J, et al.Modeling and simulation of the microstructure evolution during a cooling of immiscible alloys in the miscibility gap[J]. J. Mater. Sci. Technol., 2002, 18: 197
[136] Ratke L. Evolution of the microstructure during solidification of immiscible alloys [J]. Mater. Sci. Forum, 1996,215-216: 251
[137] Nestler B, Wheeler A A, Ratke L, et al.Phase-field model for solidification of a monotectic alloy with convection[J]. Physica, 2000, 141D: 133
[138] Nestler B, Wheeler A A.Phase-field modeling of multi-phase solidification[J]. Comput. Phys. Commun., 2002, 147: 230
[139] Tegze G, Pusztai T, Gránásy L. Phase field simulation of liquid phase separation with fluid flow [J]. Mater. Sci. Eng., 2005, A413-414: 418
[140] Rogers J R, Davis R H.Modeling of collision and coalescence of droplets during microgravity processing of Zn-Bi immiscible alloys[J]. Metall. Trans., 1990, 21A: 59
[141] Bergman ?, Fredriksson H.A study of the coalescence process inside the miscibility gap in Zn-Bi alloys [A]. Materials Processing in the Reduced Gravity Environment of Space[C]. Amsterdam: Elsevier, 1982: 563
[142] Ahlborn H, Neumann H, Schott H J.Segregation behavior of rapidly cooled monotectic Al-In and Al-Pb alloys[J]. Z. Metallkd., 1993, 84: 748
[143] Berrenberg T, Sahm P R.Production and properties of a hypermonotectic AlPb alloy as an antifriction layer. 1. Rapidly solidified cast coatings[J]. Z. Metallkd., 1996, 87: 187
[144] Zhao J Z, Drees S, Ratke L.Strip casting of Al-Pb alloys—A numerical analysis[J]. Mater. Sci. Eng., 2000, A282: 262
[145] Xia Z C, Wang W L, Wu Y H, et al.Solidification pathways of ternary Cu62.5Fe27.5Sn10 alloy modulated through liquid undercooling and containerless processing[J]. Appl. Phys., 2016, 122A: 985
[146] Luo S B, Wang W L, Xia Z C, et al.Liquid phase separation and subsequent dendritic solidification of ternary Fe35Cu35Si30 alloy[J]. Trans. Nonferrous Met. Soc. China, 2016, 26: 2762
[147] Sun Z B, Song X P, Hu Z D, et al.Secondary liquid separation and solidification of Cu-Co alloys under deep supercooling[J]. Chin. J. Nonferrous Met., 2001, 11: 172(孙占波, 宋晓平, 胡柱东等. 深过冷条件下Cu-Co合金的二次液相分解与合金的凝固[J]. 中国有色金属学报, 2001, 11: 172)
[148] Wu Y H, Wang W L, Wei B B.Experimental investigation and numerical simulation on liquid phase separation of ternary Fe-Sn-Si/Ge monotectic alloy[J]. Acta Phys. Sin., 2016, 65: 106402(吴宇昊, 王伟丽, 魏炳波. 液态三元Fe-Sn-Si/Ge偏晶合金相分离过程的实验和模拟研究[J]. 物理学报, 2016, 65: 106402)
[149] He J, Jiang H X, Zhao J Z, et al.AlNiYCo amorphous matrix composites induced by bismuth and lead additions[J]. Metall. Mater. Trans., 2011, 42A: 4100
[150] He J, Li H Q, Yang B J, et al.Liquid phase separation and microstructure characterization in a designed Al-based amorphous matrix composite with spherical crystalline particles[J]. J. Alloys Compd., 2010, 489: 535
[151] He J, Li H Q, Zhao J Z, et al.Al-based metallic glass composites containing fcc Pb-rich crystalline spheres[J]. Appl. Phys. Lett., 2008, 93: 131907
[152] Zhao L, Zhao J Z.Study of the solidification of Ni-Ag monotectic alloy[J]. Acta Metall. Sin., 2012, 48: 1381(赵雷, 赵九洲. Ni-Ag偏晶合金凝固过程研究[J]. 金属学报, 2012, 48: 1381)
[153] He J, Mattern N, Tan J, et al.A bridge from monotectic alloys to liquid-phase-separated bulk metallic glasses: Design, microstructure and phase evolution[J]. Acta Mater., 2013, 61: 2102
[154] Liu D M, Zhao J Z, Ye H Q.Modeling of the solidification of gas-atomized alloy droplets during spray forming[J]. Mater. Sci. Eng., 2004, A372: 229
[155] Zhao J Z.Equipment for preparing monotectic alloy with shell type composite powder and its use-method [P]. Chin Pat, 200610047821.6, 2006(赵九洲. 用于制备偏晶合金壳型复合组织粉末的设备及其使用方法 [P]. 中国专利, 200610047821.6, 2006)
[156] Derby B, Favier J J.A criterion for the determination of monotectic structure[J]. Acta Metall., 1983, 31: 1123
[157] Kamio A, Kumai S, Tezuka H.Solidification structure of monotectic alloys[J]. Mater. Sci. Eng., 1991, A146: 105
[158] Majumdar B, Chattopadhyay K.Aligned monotectic growth in unidirectionally solidified Zn-Bi alloys[J]. Metall. Mater. Trans., 2000, 31A: 1833
[159] Grugel R N, Lograsso T A, Hellawell A.The solidification of monotectic alloys—Microstructures and phase spacings[J]. Metall. Mater. Trans., 1984, 15A: 1003
[160] Prinz B, Romero A, Ratke L.Casting process for hypermonotectic alloys under terrestrial conditions[J]. J. Mater. Sci., 1995, 30: 4715
[161] Yang Z Z, Sun Q, Zhao J Z.Directional solidification of monotectic composition Al-Bi alloy[J]. Acta Metall. Sin., 2014, 50: 25(杨志增, 孙倩, 赵九洲. Al-Bi偏晶点成分合金定向凝固过程研究[J]. 金属学报, 2014, 50: 25)
[162] He J, Zhao J Z, Wang X F, et al.Investigation of rapid directional solidification of Al-based immiscible alloys I. Effect of solid/liquid interface[J]. Acta Metall. Sin., 2007, 43: 561(何杰, 赵九洲, 王晓峰等. Al基难混溶合金快速定向凝固研究I.固/液界面的影响[J]. 金属学报, 2007, 43: 561)
[163] He J, Zhao J Z, Wang X F, et al.Investigation of rapid directional solidification of Al-based immiscible alloys II. Effect of static magnetic field[J]. Acta Metall. Sin., 2007, 43: 567(何杰, 赵九洲, 王晓峰等. Al基难混溶合金快速定向凝固研究II.恒定磁场的影响[J]. 金属学报, 2007, 43: 567)
[164] He J, Zhao J Z, Wang X F, et al.Investigation of rapid directional solidification of Al-based immiscible alloys III. Effect of the third element[J]. Acta Metall. Sin., 2007, 43: 573(何杰, 赵九洲, 王晓峰等. Al基难混溶合金快速定向凝固研究III.第三组元的影响[J]. 金属学报, 2007, 43: 573)
[165] Zhao J Z, Li H L, Wang Q L, et al.Rapid directional solidification of Al-Pb alloy under a static magnetic field[J]. Acta Metall. Sin., 2009, 45: 1344(赵九洲, 李海丽, 王青亮等. 恒定磁场作用下Al-Pb合金快速定向凝固[J]. 金属学报, 2009, 45: 1344)
[166] Zhao Z L, Liu Y, Liu L.Grain refinement induced by a pulsed magnetic field and synchronous solidification[J]. Mater. Manuf. Processes, 2011, 26: 1202
[167] Li H, Liu S C, Jie J C, et al.Effect of pulsed magnetic field on the grain refinement and mechanical properties of 6063 aluminum alloy by direct chill casting[J]. Int. J. Adv. Manuf. Technol., 2017, 93: 3033
[168] Flemings M C.Solidification Processing[M]. New York: McGraw-Hill, 1974: 224
[169] Yang S, Liu W J, Jia J.Effects of transverse magnetic field during directional solidification of monotectic Al-6.5wt%Bi alloy[J]. J. Mater. Sci., 2001, 36: 5351
[170] Yasuda H, Kato S, Shinba T, et al.Regular structure formation of hypermonotectic Al-In alloys[J]. Mater. Sci. Forum, 2010, 649: 131
[171] Zhang Y K, Gao J, Nagamatsu D, et al.Reduced droplet coarsening in electromagnetically levitated and phase-separated Cu-Co alloys by imposition of a static magnetic field[J]. Scr. Mater., 2008, 59: 1002
[172] Yasuda H, Ohnaka I, Kawakami O, et al.Effect of magnetic field on solidification in Cu-Pb monotectic alloys[J]. ISIJ Int., 2003, 43: 942
[173] Zheng T X, Zhong Y B, Lei Z S, et al.Effects of high static magnetic field on distribution of solid particles in BiZn immiscible alloys with metastable miscibility gap[J]. J. Alloys Compd., 2015, 623: 36
[174] Schmit R L, Verhoeven J D.Diffusion and electrotransport of solutes in molten germanium-implications for producing P-N junctions[J]. Trans. Metall. Soc. AIME, 1967, 239: 148
[175] Misra A K.A novel solidification technique of metals and alloys: Under the Influence of applied potential[J]. Metall. Trans., 1985, 16A: 1354
[176] Misra A K.Misra technique1 applied to solidification of cast iron[J]. Metall. Trans., 1986, 17A: 358
[177] Ahmed S, Bond R, McKannan E C. Solidification processing superalloys in an electric field[J]. Adv. Mater. Proc., 1991, 140: 30
[178] Li J M, Li S L, Li J, et al.Modification of solidification structure by pulse electric discharging[J]. Scr. Metall. Mater., 1994, 31: 1691
[179] Liao X L, Zhai Q J, Luo J, et al.Refining mechanism of the electric current pulse on the solidification structure of pure aluminum[J]. Acta Mater., 2007, 55: 3103
[180] Sun Q.Study of the solidification of monotectic alloys under the effect of microalloying [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2017(孙倩. 偏晶合金凝固过程及微合金化的影响 [D]. 沈阳: 中国科学院金属研究所, 2017)
[1] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[3] CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1209-1220.
[4] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[5] MU Yahang, ZHANG Xue, CHEN Ziming, SUN Xiaofeng, LIANG Jingjing, LI Jinguo, ZHOU Yizhou. Modeling of Crack Susceptibility of Ni-Based Superalloy for Additive Manufacturing via Thermodynamic Calculation and Machine Learning[J]. 金属学报, 2023, 59(8): 1075-1086.
[6] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
[7] ZHANG Lu, YU Zhiwei, ZHANG Leicheng, JIANG Rong, SONG Yingdong. Thermo-Mechanical Fatigue Cycle Damage Mechanism and Numerical Simulation of GH4169 Superalloy[J]. 金属学报, 2023, 59(7): 871-883.
[8] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
[9] WANG Hanyu, LI Cai, ZHAO Can, ZENG Tao, WANG Zumin, HUANG Yuan. Direct Alloying of Immiscible Tungsten and Copper Based on Nano Active Structure and Its Thermodynamic Mechanism[J]. 金属学报, 2023, 59(5): 679-692.
[10] LIU Jihao, ZHOU Jian, WU Huibin, MA Dangshen, XU Huixia, MA Zhijun. Segregation and Solidification Mechanism in Spray-Formed M3 High-Speed Steel[J]. 金属学报, 2023, 59(5): 599-610.
[11] ZHANG Yuexin, WANG Jujin, YANG Wen, ZHANG Lifeng. Effect of Cooling Rate on the Evolution of Nonmetallic Inclusions in a Pipeline Steel[J]. 金属学报, 2023, 59(12): 1603-1612.
[12] ZHANG Kaiyuan, DONG Wenchao, ZHAO Dong, LI Shijian, LU Shanping. Effect of Solid-State Phase Transformation on Stress and Distortion for Fe-Co-Ni Ultra-High Strength Steel Components During Welding and Vacuum Gas Quenching Processes[J]. 金属学报, 2023, 59(12): 1633-1643.
[13] CHEN Kaixuan, LI Zongxuan, WANG Zidong, Demange Gilles, CHEN Xiaohua, ZHANG Jiawei, WU Xuehua, Zapolsky Helena. Morphological Evolution of Fe-Rich Precipitates in a Cu-2.0Fe Alloy During Isothermal Treatment[J]. 金属学报, 2023, 59(12): 1665-1674.
[14] SU Zhenqi, ZHANG Congjiang, YUAN Xiaotan, HU Xingjin, LU Keke, REN Weili, DING Biao, ZHENG Tianxiang, SHEN Zhe, ZHONG Yunbo, WANG Hui, WANG Qiuliang. Formation and Evolution of Stray Grains on Remelted Interface in the Seed Crystal During the Directional Solidification of Single-Crystal Superalloys Assisted by Vertical Static Magnetic Field[J]. 金属学报, 2023, 59(12): 1568-1580.
[15] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
No Suggested Reading articles found!